Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(25): e2309575, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38279627

RESUMEN

Maneuver of conducting polymers (CPs) into lightweight hydrogels can improve their functional performances in energy devices, chemical sensing, pollutant removal, drug delivery, etc. Current approaches for the manipulation of CP hydrogels are limited, and they are mostly accompanied by harsh conditions, tedious processing, compositing with other constituents, or using unusual chemicals. Herein, a two-step route is introduced for the controllable fabrication of CP hydrogels in ambient conditions, where gelation of the shape-anisotropic nano-oxidants followed by in-situ oxidative polymerization leads to the formation of polyaniline (PANI) and polypyrrole hydrogels. The method is readily coupled with different approaches for materials processing of PANI hydrogels into varied shapes, including spherical beads, continuous wires, patterned films, and free-standing objects. In comparison with their bulky counterparts, lightweight PANI items exhibit improved properties when those with specific shapes are used as electrodes for supercapacitors, gas sensors, or dye adsorbents. The current study therefore provides a general and controllable approach for the implementation of CP into hydrogels of varied external shapes, which can pave the way for the integration of lightweight CP structures with emerging functional devices.

2.
Langmuir ; 36(31): 9114-9123, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32672971

RESUMEN

Conducting polymer nanocoatings render plastics to possess interesting optical, chemical, and electrical properties. It nevertheless remains technically challenging to deposit uniform conducting polymer nanocoatings on ambient plastic substrates ascribed to the inert and varied chemical properties of plastics and the notorious processability of conducting polymers. Previous studies have made progress in delivering various conducting polymer thin films via oxidative chemical vapor deposition. Herein, we develop a solution-based approach to polyaniline (PANI) and PEGylated PANI nanocoatings on multiple engineering plastics followed by evaluating their antifouling performance. The procedure relies on the formation of uniform, lyotropic V2O5·nH2O thin films on plastics assisted by a surfactant-sodium N-lauroylsarcosinate. Next, in situ, oxidative polymerization causes the formation of nanofibrous PANI nanocoatings. Finally, interfacial functionalization leads to PEGylated PANI nanocoatings, and the steric nanolayer effectively repels the adsorption of bovine serum albumin and the attachment of the bacterium Pseudoalteromonas sp. on the surface. It is worth noting that the antifouling properties rely mainly on the presence of PEGylated PANI nanocoatings, irrespective of the type of plastic substrates underneath. The current study therefore opens an avenue for the solution-based delivery of conducting polymer-based, functional nanocoatings on hydrophobic substrates in a controllable manner with the availability of further modification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA