Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(24): e2103615119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35671424

RESUMEN

Skeletal muscle atrophy is commonly associated with aging, immobilization, muscle unloading, and congenital myopathies. Generation of mature muscle cells from skeletal muscle satellite cells (SCs) is pivotal in repairing muscle tissue. Exercise therapy promotes muscle hypertrophy and strength. Primary cilium is implicated as the mechanical sensor in some mammalian cells, but its role in skeletal muscle cells remains vague. To determine mechanical sensors for exercise-induced muscle hypertrophy, we established three SC-specific cilium dysfunctional mouse models-Myogenic factor 5 (Myf5)-Arf-like Protein 3 (Arl3)-/-, Paired box protein Pax-7 (Pax7)-Intraflagellar transport protein 88 homolog (Ift88)-/-, and Pax7-Arl3-/--by specifically deleting a ciliary protein ARL3 in MYF5-expressing SCs, or IFT88 in PAX7-expressing SCs, or ARL3 in PAX7-expressing SCs, respectively. We show that the Myf5-Arl3-/- mice develop grossly the same as WT mice. Intriguingly, mechanical stimulation-induced muscle hypertrophy or myoblast differentiation is abrogated in Myf5-Arl3-/- and Pax7-Arl3-/- mice or primary isolated Myf5-Arl3-/- and Pax7-Ift88-/- myoblasts, likely due to defective cilia-mediated Hedgehog (Hh) signaling. Collectively, we demonstrate SC cilia serve as mechanical sensors and promote exercise-induced muscle hypertrophy via Hh signaling pathway.


Asunto(s)
Cilios , Fuerza Muscular , Condicionamiento Físico Animal , Células Satélite del Músculo Esquelético , Animales , Diferenciación Celular , Cilios/fisiología , Terapia por Ejercicio , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/fisiología , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/fisiología
2.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L190-L205, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084427

RESUMEN

Tumor necrosis factor α (TNFα), a proinflammatory cytokine, plays a significant role in mediating the effects of acute inflammation in response to allergens, pollutants, and respiratory infections. Previously, we showed that acute exposure to TNFα induces mitochondrial fragmentation in human airway smooth muscle (hASM) cells, which is associated with increased expression of dynamin-related protein 1 (DRP1). Phosphorylation of DRP1 at serine 616 (pDRP1S616) promotes its translocation and binding to the outer mitochondrial membrane (OMM) and mediates mitochondrial fragmentation. Previously, we reported that TNFα exposure triggers protein unfolding and triggers an endoplasmic reticulum (ER) stress response involving phosphorylation of inositol-requiring enzyme 1α (pIRE1α) at serine 724 (pIRE1αS724) and subsequent splicing of X-box binding protein 1 (XBP1s) in hASM cells. We hypothesize that TNFα-mediated activation of the pIRE1αS724/XBP1s ER stress pathway in hASM cells transcriptionally activates genes that encode kinases responsible for pDRP1S616 phosphorylation. Using 3-D confocal imaging of MitoTracker green-labeled mitochondria, we found that TNFα treatment for 6 h induces mitochondrial fragmentation in hASM cells. We also confirmed that 6 h TNFα treatment activates the pIRE1α/XBP1s ER stress pathway. Using in silico analysis and ChIP assay, we showed that CDK1 and CDK5, kinases involved in the phosphorylation of pDRP1S616, are transcriptionally targeted by XBP1s. TNFα treatment increased the binding affinity of XBP1s on the promoter regions of CDK1 and CDK5, and this was associated with an increase in pDRP1S616 and mitochondria fragmentation. This study reveals a new underlying molecular mechanism for TNFα-induced mitochondrial fragmentation in hASM cells.NEW & NOTEWORTHY Airway inflammation is increasing worldwide. Proinflammatory cytokines mediate an adaptive mechanism to overcome inflammation-induced cellular stress. Previously, we reported that TNFα mediates hASM cellular responses, leading to increased force and ATP consumption associated with increased O2 consumption, and oxidative stress. This study indicates that TNFα induces ER stress, which induces mitochondrial fragmentation via pIRE1αS724/XBP1s mediated CDK1/5 upregulation and pDRP1S616 phosphorylation. Mitochondrial fragmentation may promote hASM mitochondrial biogenesis to maintain healthy mitochondrial pool.


Asunto(s)
Citocinas , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Fosforilación , Citocinas/metabolismo , Miocitos del Músculo Liso/metabolismo , Inflamación , Serina/metabolismo
3.
Cryobiology ; 116: 104927, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38857777

RESUMEN

Victims of severe accidental hypothermia are frequently treated with catecholamines to counteract the hemodynamic instability associated with hypothermia-induced cardiac contractile dysfunction. However, we previously reported that the inotropic effects of epinephrine are diminished after hypothermia and rewarming (H/R) in an intact animal model. Thus, the goal of this study was to investigate the effects of Epi treatment on excitation-contraction coupling in isolated rat cardiomyocytes after H/R. In adult male rats, cardiomyocytes isolated from the left ventricle were electrically stimulated at 0.5 Hz and evoked cytosolic [Ca2+] and contractile responses (sarcomere length shortening) were measured. In initial experiments, the effects of varying concentrations of epinephrine on evoked cytosolic [Ca2+] and contractile responses at 37 °C were measured. In a second series of experiments, cardiomyocytes were cooled from 37 °C to 15 °C, maintained at 15 °C for 2 h, then rewarmed to 37 °C (H/R protocol). Immediately after rewarming, the effects of epinephrine treatment on evoked cytosolic [Ca2+] and contractile responses of cardiomyocytes were determined. At 37 °C, epinephrine treatment increased both cytosolic [Ca2+] and contractile responses of cardiomyocytes in a concentration-dependent manner peaking at 25-50 nM. The evoked contractile response of cardiomyocytes after H/R was reduced while the cytosolic [Ca2+] response was slightly elevated. The diminished contractile response of cardiomyocytes after H/R was not mitigated by epinephrine (25 nM) and epinephrine treatment reduced the exponential time decay constant (Tau), but did not increase the cytosolic [Ca2+] response. We conclude that epinephrine treatment does not mitigate H/R-induced contractile dysfunction in cardiomyocytes.

4.
Mol Cell Neurosci ; 125: 103847, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36958643

RESUMEN

Brain derived neurotrophic factor (BDNF) signalling through its high-affinity tropomyosin receptor kinase B (TrkB) is known to have potent effects on motor neuron survival and morphology during development and in neurodegenerative diseases. Here, we employed a novel 1NMPP1 sensitive TrkBF616 rat model to evaluate the effect of 14 days inhibition of TrkB signalling on phrenic motor neurons (PhMNs). Adult female and male TrkBF616 rats were divided into 1NMPP1 or vehicle treated groups. Three days prior to treatment, PhMNs in both groups were initially labeled via intrapleural injection of Alexa-Fluor-647 cholera toxin B (CTB). After 11 days of treatment, retrograde axonal uptake/transport was assessed by secondary labeling of PhMNs by intrapleural injection of Alexa-Fluor-488 CTB. After 14 days of treatment, the spinal cord was excised 100 µm thick spinal sections containing PhMNs were imaged using two-channel confocal microscopy. TrkB inhibition reduced the total number of PhMNs by ∼16 %, reduced the mean PhMN somal surface areas by ∼25 %, impaired CTB uptake 2.5-fold and reduced the estimated PhMN dendritic surface area by ∼38 %. We conclude that inhibition of TrkB signalling alone in adult TrkBF616 rats is sufficient to lead to PhMN loss, morphological degeneration and deficits in retrograde axonal uptake/transport.


Asunto(s)
Neuronas Motoras , Transducción de Señal , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Neuronas Motoras/metabolismo , Transporte Biológico , Médula Espinal/metabolismo , Receptor trkB/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo
5.
J Physiol ; 601(12): 2513-2532, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36815402

RESUMEN

Spinal cord hemisection at C2 (C2 SH), sparing the dorsal column is widely used to investigate the effects of reduced phrenic motor neuron (PhMN) activation on diaphragm muscle (DIAm) function, with reduced DIAm activity on the injured side during eupnoea. Following C2 SH, recovery of DIAm EMG activity may occur spontaneously over subsequent days/weeks. Various strategies have been effective at improving the incidence and magnitude of DIAm recovery during eupnoea, but little is known about the effects of C2 SH on transdiaphragmatic pressure (Pdi ) during other ventilatory and non-ventilatory behaviours. We employ SPG302, a novel type of pegylated benzothiazole derivative, to assess whether enhancing synaptogenesis (i.e., enhancing spared local connections) will improve the incidence and the magnitude of recovery of DIAm EMG activity and Pdi function 14 days post-C2 SH. In anaesthetised Sprague-Dawley rats, DIAm EMG and Pdi were assessed during eupnoea, hypoxia/hypercapnia and airway occlusion prior to surgery (C2 SH or sham), immediately post-surgery and at 14 days post-surgery. In C2 SH rats, 14 days of DMSO (vehicle) or SPG302 treatments (i.p. injection) occurred. At the terminal experiment, maximum Pdi was evoked by bilateral phrenic nerve stimulation. We show that significant EMG and Pdi deficits are apparent in C2 SH compared with sham rats immediately after surgery. In C2 SH rats treated with SPG302, recovery of eupneic, hypoxia/hypercapnia and occlusion DIAm EMG was enhanced compared with vehicle rats after 14 days. Treatment with SPG302 also ameliorated Pdi deficits following C2 SH. In summary, SPG302 is an exciting new therapy to explore for use in spinal cord injuries. KEY POINTS: Despite advances in our understanding of the effects of cervical hemisection (C2 SH) on diaphragm muscle (DIAm) EMG activity, very little is understood about the impact of C2 SH on the gamut of ventilatory and non-ventilatory transdiaphragmatic pressures (Pdi ). Recovery of DIAm activity following C2 SH is improved using a variety of approaches, but very few pharmaceuticals have been shown to be effective. One way of improving DIAm recovery is to enhance the amount of latent local spared connections onto phrenic motor neurons. A novel pegylated benzothiazole derivative enhances synaptogenesis in a variety of neurodegenerative conditions. Here, using a novel therapeutic SPG302, we show that 14 days of treatment with SPG302 ameliorated DIAm EMG and Pdi deficits compared with vehicle controls. Our results show that SPG302 is a compound with very promising potential for use in improving functional outcomes post-spinal cord injury.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Ratas , Animales , Diafragma/fisiología , Ratas Sprague-Dawley , Hipercapnia , Traumatismos de la Médula Espinal/tratamiento farmacológico , Hipoxia , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico , Nervio Frénico/fisiología , Recuperación de la Función/fisiología
6.
Physiology (Bethesda) ; 37(2): 69-87, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34632808

RESUMEN

Hypothermia is defined as a core body temperature of <35°C, and as body temperature is reduced the impact on physiological processes can be beneficial or detrimental. The beneficial effect of hypothermia enables circulation of cooled experimental animals to be interrupted for 1-2 h without creating harmful effects, while tolerance of circulation arrest in normothermia is between 4 and 5 min. This striking difference has attracted so many investigators, experimental as well as clinical, to this field, and this discovery was fundamental for introducing therapeutic hypothermia in modern clinical medicine in the 1950s. Together with the introduction of cardiopulmonary bypass, therapeutic hypothermia has been the cornerstone in the development of modern cardiac surgery. Therapeutic hypothermia also has an undisputed role as a protective agent in organ transplantation and as a therapeutic adjuvant for cerebral protection in neonatal encephalopathy. However, the introduction of therapeutic hypothermia for organ protection during neurosurgical procedures or as a scavenger after brain and spinal trauma has been less successful. In general, the best neuroprotection seems to be obtained by avoiding hyperthermia in injured patients. Accidental hypothermia occurs when endogenous temperature control mechanisms are incapable of maintaining core body temperature within physiologic limits and core temperature becomes dependent on ambient temperature. During hypothermia spontaneous circulation is considerably reduced and with deep and/or prolonged cooling, circulatory failure may occur, which may limit safe survival of the cooled patient. Challenges that limit safe rewarming of accidental hypothermia patients include cardiac arrhythmias, uncontrolled bleeding, and "rewarming shock."


Asunto(s)
Paro Cardíaco , Hipotermia Inducida , Hipotermia , Animales , Temperatura Corporal/fisiología , Paro Cardíaco/terapia , Humanos , Hipotermia Inducida/métodos , Recalentamiento/métodos
7.
J Neurophysiol ; 130(5): 1344-1357, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37877195

RESUMEN

The neuromotor control of the diaphragm muscle (DIAm) is dynamic. The activity of the DIAm can be recorded via electromyography (EMG), which represents the temporal summation of motor unit action potentials. Our goal in the present study was to investigate DIAm neuromotor control during quiet spontaneous breathing (eupnea) in awake rats by evaluating DIAm EMG at specific temporal locations defined by motor unit recruitment and derecruitment. We evaluated the nonstationarity of DIAm EMG activity to identify DIAm motor unit recruitment and derecruitment durations. Combined with assessments of root mean square (RMS) and sum of squares (SS) EMG, the durations of these phases provide physiological information about the temporal aspects of motor control. During eupnea in awake rats (n = 10), the duration of motor unit recruitment comprised 61 ± 19 ms of the onset-to-peak duration (214 ± 62 ms) of the DIAm RMS EMG. The peak-to-offset duration of DIAm EMG activity was 453 ± 96 ms, with a terminating period of derecruitment of 161 ± 44 ms. The burst duration was 673 ± 128 ms. Both the RMS EMG amplitude and the SS EMG were higher at the completion of motor unit recruitment than at the start of motor unit derecruitment, suggesting that offset discharge rates were lower than onset discharge rates. Our analyses provide novel insights into the time domain aspects of DIAm neuromotor control and allow indirect estimates of the contribution of recruitment and frequency to RMS EMG amplitude during eupnea in awake rats.NEW & NOTEWORTHY We characterized three phases of neuromotor control-motor unit recruitment, sustained activity, and derecruitment-based on statistical assessments of stationarity of the diaphragm muscle (DIAm) EMG activity in awake rats. Our findings may allow indirect estimates of the contribution of motor unit recruitment and frequency coding toward generating force and provide novel insights about the temporal aspects of DIAm neuromotor control and descending respiratory drive in unanesthetized animals.


Asunto(s)
Diafragma , Vigilia , Ratas , Animales , Electromiografía , Diafragma/fisiología , Ratas Sprague-Dawley
8.
J Neurophysiol ; 129(4): 781-792, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36883761

RESUMEN

Previous studies show that synaptic quantal release decreases during repetitive stimulation, i.e., synaptic depression. Neurotrophin brain-derived neurotrophic factor (BDNF) enhances neuromuscular transmission via activation of tropomyosin-related kinase receptor B (TrkB). We hypothesized that BDNF mitigates synaptic depression at the neuromuscular junction and that the effect is more pronounced at type IIx and/or IIb fibers compared to type I or IIa fibers given the more rapid reduction in docked synaptic vesicles with repetitive stimulation. Rat phrenic nerve-diaphragm muscle preparations were used to determine the effect of BDNF on synaptic quantal release during repetitive stimulation at 50 Hz. An ∼40% decline in quantal release was observed during each 330-ms duration train of nerve stimulation (intratrain synaptic depression), and this intratrain decline was observed across repetitive trains (20 trains at 1/s repeated every 5 min for 30 min for 6 sets). BDNF treatment significantly enhanced quantal release at all fiber types (P < 0.001). BDNF treatment did not change release probability within a stimulation set but enhanced synaptic vesicle replenishment between sets. In agreement, synaptic vesicle cycling (measured using FM4-64 fluorescence uptake) was increased following BDNF [or neurotrophin-4 (NT-4)] treatment (∼40%; P < 0.05). Conversely, inhibiting BDNF/TrkB signaling with the tyrosine kinase inhibitor K252a and TrkB-IgG (which quenches endogenous BDNF or NT-4) decreased FM4-64 uptake (∼34% across fiber types; P < 0.05). The effects of BDNF were generally similar across all fiber types. We conclude that BDNF/TrkB signaling acutely enhances presynaptic quantal release and thereby may serve to mitigate synaptic depression and maintain neuromuscular transmission during repetitive activation.NEW & NOTEWORTHY Neurotrophin brain-derived neurotrophic factor (BDNF) enhances neuromuscular transmission via activation of tropomyosin-related kinase receptor B (TrkB). Rat phrenic nerve-diaphragm muscle preparations were used to determine the rapid effect of BDNF on synaptic quantal release during repetitive stimulation. BDNF treatment significantly enhanced quantal release at all fiber types. BDNF increased synaptic vesicle cycling (measured using FM4-64 fluorescence uptake); conversely, inhibiting BDNF/TrkB signaling decreased FM4-64 uptake.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Diafragma , Ratas , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Diafragma/fisiología , Tropomiosina/farmacología , Unión Neuromuscular/fisiología
9.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982859

RESUMEN

Proinflammatory cytokines such as TNFα mediate airway inflammation. Previously, we showed that TNFα increases mitochondrial biogenesis in human ASM (hASM) cells, which is associated with increased PGC1α expression. We hypothesized that TNFα induces CREB and ATF1 phosphorylation (pCREBS133 and pATF1S63), which transcriptionally co-activate PGC1α expression. Primary hASM cells were dissociated from bronchiolar tissue obtained from patients undergoing lung resection, cultured (one-three passages), and then differentiated by serum deprivation (48 h). hASM cells from the same patient were divided into two groups: TNFα (20 ng/mL) treated for 6 h and untreated controls. Mitochondria were labeled using MitoTracker green and imaged using 3D confocal microscopy to determine mitochondrial volume density. Mitochondrial biogenesis was assessed based on relative mitochondrial DNA (mtDNA) copy number determined by quantitative real-time PCR (qPCR). Gene and/or protein expression of pCREBS133, pATF1S63, PCG1α, and downstream signaling molecules (NRFs, TFAM) that regulate transcription and replication of the mitochondrial genome, were determined by qPCR and/or Western blot. TNFα increased mitochondrial volume density and mitochondrial biogenesis in hASM cells, which was associated with an increase in pCREBS133, pATF1S63 and PCG1α expression, with downstream transcriptional activation of NRF1, NRF2, and TFAM. We conclude that TNFα increases mitochondrial volume density in hASM cells via a pCREBS133/pATF1S63/PCG1α-mediated pathway.


Asunto(s)
Biogénesis de Organelos , Factor de Necrosis Tumoral alfa , Humanos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Mitocondrias/metabolismo , ADN Mitocondrial/genética , Músculo Liso/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
10.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958799

RESUMEN

Airway inflammation and pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα) underlie the pathophysiology of respiratory diseases, including asthma. Previously, we showed that TNFα activates the inositol-requiring enzyme 1α (IRE1α)/X-box binding protein 1 spliced (XBP1s) endoplasmic reticulum (ER) stress pathway in human airway smooth muscle (hASM) cells. The ER stress pathway is activated by the accumulation of unfolded proteins in the ER. Accordingly, chemical chaperones such as 4-phenylbutyric acid (4-PBA) may reduce ER stress activation. In the present study, we hypothesized that chemical chaperone 4-PBA mitigates TNFα-induced ER stress in hASM cells. hASM cells were isolated from bronchiolar tissue obtained from five patients with no history of smoking or respiratory diseases. The hASM cells' phenotype was confirmed via the expression of alpha-smooth muscle actin and elongated morphology. hASM cells from the same patient sample were then separated into three 12 h treatment groups: (1) TNFα (20 ng/mL), (2) TNFα + 4-PBA (1 µM, 30 min pretreatment), and (3) untreated control. The expressions of total IRE1α and phosphorylated IRE1α (pIRE1αS724) were determined through Western blotting. The splicing of XBP1 mRNA was analyzed using RT-PCR. We found that TNFα induced an increase in pIRE1αS724 phosphorylation, which was mitigated by treatment with chemical chaperone 4-PBA. We also found that TNFα induced an increase in XBP1s mRNA, which was also mitigated by treatment with chemical chaperone 4-PBA. These results support our hypothesis and indicate that chemical chaperone 4-PBA treatment mitigates TNFα-induced ER stress in hASM cells.


Asunto(s)
Asma , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Endorribonucleasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés del Retículo Endoplásmico , Fenilbutiratos/farmacología , Chaperonas Moleculares , Músculo Liso/metabolismo , ARN Mensajero
11.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37511264

RESUMEN

Cellular mitochondrial function can be assessed using high-resolution respirometry that measures the O2 consumption rate (OCR) across a number of cells. However, a direct measurement of cellular mitochondrial function provides valuable information and physiological insight. In the present study, we used a quantitative histochemical technique to measure the activity of succinate dehydrogenase (SDH), a key enzyme located in the inner mitochondrial membrane, which participates in both the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) as Complex II. In this study, we determine the maximum velocity of the SDH reaction (SDHmax) in individual human airway smooth muscle (hASM) cells. To measure SDHmax, hASM cells were exposed to a solution containing 80 mM succinate and 1.5 mM nitroblue tetrazolium (NBT, reaction indicator). As the reaction proceeded, the change in optical density (OD) due to the reduction of NBT to its diformazan (peak absorbance wavelength of 570 nm) was measured using a confocal microscope with the pathlength for light absorbance tightly controlled. SDHmax was determined during the linear period of the SDH reaction and expressed as mmol fumarate/liter of cell/min. We determine that this technique is rigorous and reproducible, and reliable for the measurement of mitochondrial function in individual cells.


Asunto(s)
Ciclo del Ácido Cítrico , Mitocondrias , Humanos , Mitocondrias/metabolismo , Miocitos del Músculo Liso
12.
Am J Physiol Lung Cell Mol Physiol ; 320(1): L137-L151, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33146568

RESUMEN

In human airway smooth muscle (hASM), mitochondrial volume density is greater in asthmatic patients compared with normal controls. There is also an increase in mitochondrial fragmentation in hASM of moderate asthmatics associated with an increase in dynamin-related protein 1 (Drp1) and a decrease in mitofusin 2 (Mfn2) expression, mitochondrial fission, and fusion proteins, respectively. Proinflammatory cytokines such TNFα contribute to hASM hyperreactivity and cell proliferation associated with asthma. However, the involvement of proinflammatory cytokines in mitochondrial remodeling is not clearly established. In nonasthmatic hASM cells, mitochondria were labeled using MitoTracker Red and imaged in three dimensions using a confocal microscope. After 24-h TNFα exposure, mitochondria in hASM cells were more fragmented, evidenced by decreased form factor and aspect ratio and increased sphericity. Associated with increased mitochondrial fragmentation, Drp1 expression increased while Mfn2 expression was reduced. TNFα also increased mitochondrial biogenesis in hASM cells reflected by increased peroxisome proliferator-activated receptor-γ coactivator 1α expression and increased mitochondrial DNA copy number. Associated with mitochondrial biogenesis, TNFα exposure also increased mitochondrial volume density and porin expression, resulting in an increase in maximum O2 consumption rate. However, when normalized for mitochondrial volume density, O2 consumption rate per mitochondrion was reduced by TNFα exposure. Associated with mitochondrial fragmentation and biogenesis, TNFα also increased hASM cell proliferation, an effect mimicked by siRNA knockdown of Mfn2 expression and mitigated by Mfn2 overexpression. The results of this study support our hypothesis that in hASM cells exposed to TNFα mitochondria are more fragmented, with an increase in mitochondrial biogenesis and mitochondrial volume density resulting in reduced O2 consumption rate per mitochondrion.


Asunto(s)
Bronquios/efectos de los fármacos , Mitocondrias/patología , Músculo Liso/efectos de los fármacos , Biogénesis de Organelos , Consumo de Oxígeno/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Bronquios/metabolismo , Bronquios/patología , Proliferación Celular , Células Cultivadas , Dinaminas/metabolismo , Femenino , GTP Fosfohidrolasas/metabolismo , Humanos , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Liso/metabolismo , Músculo Liso/patología
13.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L91-L101, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33908264

RESUMEN

During agonist stimulation of airway smooth muscle (ASM), agonists such as ACh induce a transient increase in cytosolic Ca2+ concentration ([Ca2+]cyt), which leads to a contractile response [excitation-contraction (E-C) coupling]. Previously, the sensitivity of the contractile response of ASM to elevated [Ca2+]cyt (Ca2+ sensitivity) was assessed as the ratio of maximum force to maximum [Ca2+]cyt. However, this static assessment of Ca2+ sensitivity overlooks the dynamic nature of E-C coupling in ASM. In this study, we simultaneously measured [Ca2+]cyt and isometric force responses to three concentrations of ACh (1, 2.6, and 10 µM). Both maximum [Ca2+]cyt and maximum force responses were ACh concentration dependent, but force increased disproportionately, thereby increasing static Ca2+ sensitivity. The dynamic properties of E-C coupling were assessed in several ways. The temporal delay between the onset of ACh-induced [Ca2+]cyt and onset force responses was not affected by ACh concentration. The rates of rise of the ACh-induced [Ca2+]cyt and force responses increased with increasing ACh concentration. The integral of the phase-loop plot of [Ca2+]cyt and force from onset to steady state also increased with increasing ACh concentration, whereas the rate of relaxation remained unchanged. Although these results suggest an ACh concentration-dependent increase in the rate of cross-bridge recruitment and in the rate of rise of [Ca2+]cyt, the extent of regulatory myosin light-chain (rMLC20) phosphorylation was not dependent on ACh concentration. We conclude that the dynamic properties of [Ca2+]cyt and force responses in ASM are dependent on ACh concentration but reflect more than changes in the extent of rMLC20 phosphorylation.


Asunto(s)
Calcio/metabolismo , Colinérgicos/farmacología , Citosol/metabolismo , Contracción Muscular , Músculo Liso/metabolismo , Sistema Respiratorio/metabolismo , Animales , Citosol/efectos de los fármacos , Femenino , Masculino , Músculo Liso/efectos de los fármacos , Sistema Respiratorio/efectos de los fármacos , Porcinos
14.
J Neurophysiol ; 125(6): 2158-2165, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33949892

RESUMEN

Unilateral C2 hemisection (C2SH) disrupts descending inspiratory-related drive to phrenic motor neurons and thus, silences rhythmic diaphragm muscle (DIAm) activity. There is gradual recovery of rhythmic DIAm EMG activity over time post-C2SH, consistent with neuroplasticity, which is enhanced by chronic (2 wk) intrathecal BDNF treatment. In the present study, we hypothesized that acute (30 min) intrathecal BDNF treatment also enhances recovery of DIAm EMG activity after C2SH. Rats were implanted with bilateral DIAm EMG electrodes to verify the absence of ipsilateral eupneic DIAm EMG activity at the time of C2SH and at 3 days post-C2SH. In those animals displaying no recovery of DIAm EMG activity after 28 days (n = 7), BDNF was administered intrathecally (450 mcg) at C4. DIAm EMG activity was measured continuously both before and for 30 min after BDNF treatment, during eupnea, hypoxia-hypercapnia, and spontaneous sighs. Acute BDNF treatment restored eupneic DIAm EMG activity in all treated animals to an amplitude that was 78% ± 9% of pre-C2SH root mean square (RMS) (P < 0.001). In addition, acute BDNF treatment increased DIAm RMS EMG amplitude during hypoxia-hypercapnia (P = 0.023) but had no effect on RMS EMG amplitude during sighs. These results support an acute modulatory role of BDNF signaling on excitatory synaptic transmission at phrenic motor neurons after cervical spinal cord injury.NEW & NOTEWORTHY Brain-derived neurotrophic factor (BDNF) plays an important role in promoting neuroplasticity following unilateral C2 spinal hemisection (C2SH). BDNF was administered intrathecally in rats displaying lack of ipsilateral inspiratory-related diaphragm (DIAm) EMG activity after C2SH. Acute BDNF treatment (30 min) restored eupneic DIAm EMG activity in all treated animals to 78% ± 9% of pre-C2SH level. In addition, acute BDNF treatment increased DIAm EMG amplitude during hypoxia-hypercapnia but had no effect on EMG amplitude during sighs.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Médula Cervical/lesiones , Diafragma/efectos de los fármacos , Diafragma/fisiopatología , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/fisiopatología , Animales , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Modelos Animales de Enfermedad , Electromiografía , Inyecciones Espinales , Masculino , Ratas , Ratas Sprague-Dawley
15.
J Neurophysiol ; 125(4): 1157-1163, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33596726

RESUMEN

Ventilatory deficits are common in old age and may result from neuromuscular dysfunction. Signaling via the tropomyosin-related kinase receptor B (TrkB) regulates neuromuscular transmission and, in young mice, is important for the generation of transdiaphragmatic pressure (Pdi). Loss of TrkB signaling worsened neuromuscular transmission failure and reduced maximal Pdi, and these effects are similar to those observed in old age. Administration of TrkB agonists such as 7,8-dihydroxyflavone (7,8-DHF) improves neuromuscular transmission in young and old mice (18 mo; 75% survival). We hypothesized that TrkB signaling contributes to Pdi generation in old mice, particularly during maximal force behaviors. Old male and female TrkBF616A mice, with a mutation that induces 1NMPP1-mediated TrkB kinase inhibition, were randomly assigned to systemic treatment with vehicle, 7,8-DHF, or 1NMPP1 1 h before experiments. Pdi was measured during eupneic breathing (room air), hypoxia-hypercapnia (10% O2/5% CO2), tracheal occlusion, spontaneous deep breaths ("sighs"), and bilateral phrenic nerve stimulation (Pdimax). There were no differences in the Pdi amplitude across treatments during ventilatory behaviors (eupnea, hypoxia-hypercapnia, occlusion, or sigh). As expected, Pdi increased from eupnea and hypoxia-hypercapnia (∼7 cm H2O) to occlusion and sighs (∼25 cm H2O), with no differences across treatments. Pdimax was ∼50 cm H2O in the vehicle and 7,8-DHF groups and ∼40 cm H2O in the 1NMPP1 group (F8,74 = 2; P = 0.02). Our results indicate that TrkB signaling is necessary for generating maximal forces by the diaphragm muscle in old mice and are consistent with aging effects of TrkB signaling on neuromuscular transmission.NEW & NOTEWORTHY TrkB signaling is necessary for generating maximal forces by the diaphragm muscle. In 19- to 21-mo-old TrkBF616A mice susceptible to 1NMPP1-induced inhibition of TrkB kinase activity, maximal Pdi generated by bilateral phrenic nerve stimulation was ∼20% lower after 1NMPP1 compared with vehicle-treated mice. Treatment with the TrkB agonist 7,8-dihydroxyflavone did not affect Pdi generation when compared with age-matched mice. Inhibition of TrkB kinase activity did not affect the forces generated during lower force behaviors in old age.


Asunto(s)
Envejecimiento/fisiología , Diafragma/fisiología , Flavonas/farmacología , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/fisiología , Unión Neuromuscular/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/fisiología , Respiración , Transducción de Señal/fisiología , Factores de Edad , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Diafragma/efectos de los fármacos , Ratones , Ratones Transgénicos , Unión Neuromuscular/efectos de los fármacos , Pirazoles/farmacología , Pirimidinas/farmacología , Respiración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
16.
FASEB J ; 34(11): 14458-14472, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32885495

RESUMEN

Interleukin-6 (IL-6) is a pleiotropic cytokine that has been shown to be produced acutely by skeletal muscle in response to exercise, yet chronically elevated with obesity and aging. The mechanisms by which IL-6 influences skeletal muscle mitochondria acutely and chronically are unclear. To better understand the influence of extramyocellular IL-6 on skeletal muscle mitochondrial physiology, we treated differentiated myotubes with exogenous IL-6 to evaluate the dose- and duration-dependent effects of IL-6 on salient aspects of mitochondrial biology and the role of canonical IL-6 signaling in muscle cells. Acute exposure of myotubes to IL-6 increased the mitochondrial reactive oxygen species (mtROS) production and oxygen consumption rates (JO2 ) in a manner that was dependent on activation of the JAK/STAT pathway. Furthermore, STAT3 activation by IL-6 was partly attenuated by MitoQ, a mitochondrial-targeted antioxidant, suggesting that mtROS potentiates STAT3 signaling in skeletal muscle in response to IL-6 exposure. In concert with effects on mitochondrial physiology, acute IL-6 exposure induced several mitochondrial adaptations, consistent with the stress-induced mitochondrial hyperfusion. Exposure of myotubes to chronically elevated IL-6 further increased mtROS with eventual loss of respiratory capacity. These data provide new evidence supporting the interplay between cytokine signaling and mitochondrial physiology in skeletal muscle.


Asunto(s)
Interleucina-6/farmacología , Quinasas Janus/metabolismo , Mitocondrias Musculares/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Animales , Antioxidantes/farmacología , Línea Celular , Ratones , Mitocondrias Musculares/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Compuestos Organofosforados/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacología
17.
Exp Physiol ; 106(5): 1196-1207, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33728692

RESUMEN

NEW FINDINGS: What is the central question of this study? Detailed guidelines for volume replacement to counteract hypothermia-induced intravascular fluid loss are lacking. Evidence suggests colloids might have beneficial effects compared to crystalloids. Are central haemodynamic function and level of hypothermia-induced calcium overload, as a marker of cardiac injury, restored by fluid substitution during rewarming, and are colloids favourable to crystalloids? What is the main finding and its importance? Infusion with crystalloid or dextran during rewarming abolished post-hypothermic cardiac dysfunction, and partially mitigated myocardial calcium overload. The effects of volume replacement to support haemodynamic function are comparable to those using potent cardio-active drugs. These findings underline the importance of applying intravascular volume replacement to maintain euvolaemia during rewarming. ABSTRACT: Previous research exploring pathophysiological mechanisms underlying circulatory collapse after rewarming victims of severe accidental hypothermia has documented post-hypothermic cardiac dysfunction and hypothermia-induced elevation of intracellular Ca2+ concentration ([Ca2+ ]i ) in myocardial cells. The aim of the present study was to examine if maintaining euvolaemia during rewarming mitigates cardiac dysfunction and/or normalizes elevated myocardial [Ca2+ ]i . A total of 21 male Wistar rats (300 g) were surface cooled to 15°C, then maintained at 15°C for 4 h, and subsequently rewarmed to 37°C. The rats were randomly assigned to one of three groups: (1) non-intervention control (n = 7), (2) dextran treated (i.v. 12 ml/kg dextran 70; n = 7), or (3) crystalloid treated (24 ml/kg 0.9% i.v. saline; n = 7). Infusions occurred during the first 30 min of rewarming. Arterial blood pressure, stroke volume (SV), cardiac output (CO), contractility (dP/dtmax ) and blood gas changes were measured. Post-hypothermic changes in [Ca2+ ]i were measured using the method of radiolabelled Ca2+ (45 Ca2+ ). Untreated controls displayed post-hypothermic cardiac dysfunction with significantly reduced CO, SV and dP/dtmax . In contrast, rats receiving crystalloid or dextran treatment showed a return to pre-hypothermic control levels of CO and SV after rewarming, with the dextran group displaying significantly better amelioration of post-hypothermic cardiac dysfunction than the crystalloid group. Compared to the post-hypothermic increase in myocardial [Ca2+ ]i in non-treated controls, [Ca2+ ]i values with crystalloid and dextran did not increase to the same extent after rewarming. Volume replacement with crystalloid or dextran during rewarming abolishes post-hypothermic cardiac dysfunction, and partially mitigates the hypothermia-induced elevation of [Ca2+ ]i .


Asunto(s)
Hipotermia Inducida , Hipotermia , Animales , Masculino , Miocitos Cardíacos , Ratas , Ratas Wistar , Recalentamiento/métodos
18.
J Physiol ; 598(20): 4693-4711, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32735344

RESUMEN

KEY POINTS: Motor units, comprising a motor neuron and the muscle fibre it innervates, are activated in an orderly fashion to provide varying amounts of force. A unilateral C2 spinal hemisection (C2SH) disrupts predominant excitatory input from medulla, causing cessation of inspiratory-related diaphragm muscle activity, whereas higher force, non-ventilatory diaphragm activity persists. In this study, we show a disproportionately larger loss of excitatory glutamatergic innervation to small phrenic motor neurons (PhMNs) following C2SH, as compared with large PhMNs ipsilateral to injury. Our data suggest that there is a dichotomy in the distribution of inspiratory-related descending excitatory glutamatergic input to small vs. large PhMNs that reflects their differential recruitment. ABSTRACT: Excitatory glutamatergic input mediating inspiratory drive to phrenic motor neurons (PhMNs) emanates primarily from the ipsilateral ventrolateral medulla. Unilateral C2 hemisection (C2SH) disrupts this excitatory input, resulting in cessation of inspiratory-related diaphragm muscle (DIAm) activity. In contrast, after C2SH, higher force, non-ventilatory DIAm activity persists. Inspiratory behaviours require recruitment of only smaller PhMNs, whereas with more forceful expulsive/straining behaviours, larger PhMNs are recruited. Accordingly, we hypothesize that C2SH primarily disrupts glutamatergic synaptic inputs to smaller PhMNs, whereas glutamatergic synaptic inputs to larger PhMNs are preserved. We examined changes in glutamatergic presynaptic input onto retrogradely labelled PhMNs using immunohistochemistry for VGLUT1 and VGLUT2. We found that 7 days after C2SH there was an ∼60% reduction in glutamatergic inputs to smaller PhMNs compared with an ∼35% reduction at larger PhMNs. These results are consistent with a more pronounced impact of C2SH on inspiratory behaviours of the DIAm, and the preservation of higher force behaviours after C2SH. These results indicate that the source of glutamatergic synaptic input to PhMNs varies depending on motor neuron size and reflects different functional control - perhaps separate central pattern generator and premotor circuits. For smaller PhMNs, the central pattern generator for inspiration is located in the pre-Bötzinger complex and premotor neurons in the ventrolateral medulla, sending predominantly ipsilateral projections via the dorsolateral funiculus. C2SH disrupts this glutamatergic input. For larger PhMNs, a large proportion of excitatory inputs appear to exist below the C2 level or from contralateral regions of the brainstem and spinal cord.


Asunto(s)
Nervio Frénico , Traumatismos de la Médula Espinal , Diafragma , Humanos , Neuronas Motoras
19.
Physiology (Bethesda) ; 34(3): 216-229, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30968751

RESUMEN

Spastic cerebral palsy (CP), despite the name, is not consistently identifiable by specific brain lesions. CP animal models focus on risk factors for development of CP, yet few reproduce the diagnostic symptoms. Animal models of CP must advance beyond risk factors to etiologies, including both the brain and spinal cord.


Asunto(s)
Parálisis Cerebral , Modelos Animales de Enfermedad , Animales , Encéfalo/patología , Parálisis Cerebral/etiología , Parálisis Cerebral/patología , Parálisis Cerebral/fisiopatología , Humanos , Factores de Riesgo
20.
Am J Physiol Lung Cell Mol Physiol ; 318(3): L483-L493, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31940218

RESUMEN

Airway inflammation is a key aspect of diseases such as asthma. Proinflammatory cytokines such as TNFα mediate the inflammatory response. In various diseases, inflammation leads to endoplasmic reticulum (ER) stress, the accumulation of unfolded proteins, which triggers homeostatic responses to restore normal cellular function. We hypothesized that TNFα triggers ER stress through an increase in reactive oxygen species generation in human airway smooth muscle (hASM) with a downstream effect on mitofusin 2 (Mfn2). In hASM cells isolated from lung specimens incidental to patient surgery, dose- and time-dependent effects of TNFα exposure were assessed. Exposure of hASM to tunicamycin was used as a positive control. Tempol (500 µM) was used as superoxide scavenger. Activation of three ER stress pathways were evaluated by Western blotting: 1) autophosphorylation of inositol-requiring enzyme1 (IRE1α) leading to splicing of X-box binding protein 1 (XBP1); 2) autophosphorylation of protein kinase RNA-like endoplasmic reticulum kinase (PERK) leading to phosphorylation of eukaryotic initiation factor 2α; and 3) translocation and cleavage of activating transcription factor 6 (ATF6). We found that exposure of hASM cells to tunicamycin activated all three ER stress pathways. In contrast, TNFα selectively activated the IRE1α/XBP1 pathway in a dose- and time-dependent fashion. Our results indicate that TNFα does not activate the PERK and ATF6 pathways. Exposure of hASM cells to TNFα also decreased Mfn2 protein expression. Concurrent exposure to TNFα and tempol reversed the effect of TNFα on IRE1α phosphorylation and Mfn2 protein expression. Selective activation of the IRE1α/XBP1 pathway in hASM cells after exposure to TNFα may reflect a unique homeostatic role of this pathway in the inflammatory response of hASM cells.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , Endorribonucleasas/metabolismo , Músculo Liso Vascular/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Proteína 1 de Unión a la X-Box/metabolismo , Células Cultivadas , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Endorribonucleasas/genética , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Respuesta de Proteína Desplegada/efectos de los fármacos , Proteína 1 de Unión a la X-Box/genética , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA