Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biomacromolecules ; 25(2): 1291-1302, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38170593

RESUMEN

Bicontinuous thermotropic liquid crystal (LC) materials, e.g., double gyroid (DG) phases, have garnered significant attention due to the potential utility of their 3D network structures in wide-ranging applications. However, the utility of these materials is significantly constrained by the lack of robust molecular design rules for shape-filling amphiphiles that spontaneously adopt the saddle curvatures required to access these useful supramolecular assemblies. Toward this aim, we synthesized anomerically pure Guerbet-type glycolipids bearing cellobiose head groups and branched alkyl tails and studied their thermotropic LC self-assembly. Using a combination of differential scanning calorimetry, polarized optical microscopy, and small-angle X-ray scattering, our studies demonstrate that Guerbet cellobiosides exhibit a strong propensity to self-assemble into DG morphologies over wide thermotropic phase windows. The stabilities of these assemblies sensitively depend on the branched alkyl tail structure and the anomeric configuration of the glycolipid in a previously unrecognized manner. Complementary molecular simulations furnish detailed insights into the observed self-assembly characteristics, thus unveiling molecular motifs that foster network phase self-assembly that will enable future designs and applications of network LC materials.


Asunto(s)
Celobiosa , Cristales Líquidos , Glucolípidos/química , Cristales Líquidos/química , Rastreo Diferencial de Calorimetría , Microscopía
2.
J Am Chem Soc ; 145(51): 27975-27983, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38085867

RESUMEN

Chemically stable metal-organic frameworks (MOFs) featuring interconnected hierarchical pores have proven to be promising for a remarkable variety of applications. Nevertheless, the framework's susceptibility to capillary-force-induced pore collapse, especially during water evacuation, has often limited practical applications. Methodologies capable of predicting the relative magnitudes of these forces as functions of the pore size, chemical composition of the pore walls, and fluid loading would be valuable for resolution of the pore collapse problem. Here, we report that a molecular simulation approach centered on evacuation-induced nanocavitation within fluids occupying MOF pores can yield the desired physical-force information. The computations can spatially pinpoint evacuation elements responsible for collapse and the chemical basis for mitigation of the collapse of modified pores. Experimental isotherms and difference-electron density measurements of the MOF NU-1000 and four chemical variants validate the computational approach and corroborate predictions regarding relative stability, anomalous sequence of pore-filling, and chemical basis for mitigation of destructive forces.

3.
J Am Chem Soc ; 145(2): 1407-1422, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36598430

RESUMEN

Grafting metal cations to missing linker defect sites in zirconium-based metal-organic frameworks, such as UiO-66, produces a uniquely well-defined and homotopic catalytically active site. We present here the synthesis and characterization of a group of UiO-66-supported metal catalysts, M-UiO-66 (M = Ni, Co, Cu, and Cr), for the catalytic dimerization of alkenes. The hydrogen-deuterium exchange via deuterium oxide adsorption followed by infrared spectroscopy showed that the last molecular water ligand desorbs from the sites after evacuation at 300 °C leading to M(OH)-UiO-66 structures. Adsorption of 1-butene is studied using calorimetry and density functional theory techniques to characterize the interactions of the alkene with metal cation sites that are found active for alkene oligomerization. For the most active Ni-UiO-66, the removal of molecular water from the active site significantly increases the 1-butene adsorption enthalpy and almost doubles the catalytic activity for 1-butene dimerization in comparison to the presence of water ligands. Other M-UiO-66 (M = Co, Cu, and Cr) exhibit 1-3 orders of magnitude lower catalytic activities compared to Ni-UiO-66. The catalytic activities correlate linearly with the Gibbs free energy of 1-butene adsorption. Density functional theory calculations probing the Cossee-Arlman mechanism for all metals support the differences in activity, providing a molecular level understanding of the metal site as the active center for 1-butene dimerization.


Asunto(s)
Compuestos Organometálicos , Adsorción , Dimerización , Cationes , Circonio/química , Alquenos , Agua/química
4.
J Am Chem Soc ; 145(51): 28284-28295, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38090755

RESUMEN

We construct a data set of metal-organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying the existing linker structures. This strategy allows the GPT model to learn the intricate language of chemistry in molecular representations, thereby achieving an enhanced accuracy in generating linker structures compared with its base models. Aiming to highlight the significance of linker design strategies in advancing the discovery of water-harvesting MOFs, we conducted a systematic MOF variant expansion upon state-of-the-art MOF-303 utilizing a multidimensional approach that integrates linker extension with multivariate tuning strategies. We synthesized a series of isoreticular aluminum MOFs, termed Long-Arm MOFs (LAMOF-1 to LAMOF-10), featuring linkers that bear various combinations of heteroatoms in their five-membered ring moiety, replacing pyrazole with either thiophene, furan, or thiazole rings or a combination of two. Beyond their consistent and robust architecture, as demonstrated by permanent porosity and thermal stability, the LAMOF series offers a generalizable synthesis strategy. Importantly, these 10 LAMOFs establish new benchmarks for water uptake (up to 0.64 g g-1) and operational humidity ranges (between 13 and 53%), thereby expanding the diversity of water-harvesting MOFs.

5.
Nature ; 543(7647): 690-694, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28297708

RESUMEN

A zeolite with structure type MFI is an aluminosilicate or silicate material that has a three-dimensionally connected pore network, which enables molecular recognition in the size range 0.5-0.6 nm. These micropore dimensions are relevant for many valuable chemical intermediates, and therefore MFI-type zeolites are widely used in the chemical industry as selective catalysts or adsorbents. As with all zeolites, strategies to tailor them for specific applications include controlling their crystal size and shape. Nanometre-thick MFI crystals (nanosheets) have been introduced in pillared and self-pillared (intergrown) architectures, offering improved mass-transfer characteristics for certain adsorption and catalysis applications. Moreover, single (non-intergrown and non-layered) nanosheets have been used to prepare thin membranes that could be used to improve the energy efficiency of separation processes. However, until now, single MFI nanosheets have been prepared using a multi-step approach based on the exfoliation of layered MFI, followed by centrifugation to remove non-exfoliated particles. This top-down method is time-consuming, costly and low-yield and it produces fragmented nanosheets with submicrometre lateral dimensions. Alternatively, direct (bottom-up) synthesis could produce high-aspect-ratio zeolite nanosheets, with improved yield and at lower cost. Here we use a nanocrystal-seeded growth method triggered by a single rotational intergrowth to synthesize high-aspect-ratio MFI nanosheets with a thickness of 5 nanometres (2.5 unit cells). These high-aspect-ratio nanosheets allow the fabrication of thin and defect-free coatings that effectively cover porous substrates. These coatings can be intergrown to produce high-flux and ultra-selective MFI membranes that compare favourably with other MFI membranes prepared from existing MFI materials (such as exfoliated nanosheets or nanocrystals).

6.
J Chem Phys ; 159(22)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095201

RESUMEN

Molecular dynamics simulations in the microcanonical ensemble are performed to study the collapse of a bubble in liquid water using the single-site mW and the four-site TIP4P/2005 water models. To study system size effects, simulations for pure water systems are performed using periodically replicated simulation boxes with linear dimensions, L, ranging from 32 to 512 nm with the largest systems containing 8.7 × 106 and 4.5 × 109 molecules for the TIP4P/2005 and mW water models, respectively. The computationally more efficient mW water model allows us to reach converging behavior when the bubble dynamics results are plotted in reduced units, and the limiting behavior can be obtained through linear extrapolation in L-1. Qualitative differences are observed between simulations with the mW and TIP4P/2005 water models, but they can be explained by the models' differences in predicted viscosity and surface tension. Although bubble collapse occurs on time scales of only hundreds of picoseconds, the system sizes used here are sufficiently large to obtain bubble dynamics consistent with the Rayleigh-Plesset equation when using the models' thermophysical properties as input. For the conditions explored here, extreme heating of the interfacial water molecules near the time of collapse is observed for the larger mW water systems (but the model underpredicts the viscosity), whereas heating is less pronounced for the TIP4P/2005 water systems because its larger viscosity contribution slows the collapse dynamics. The presence of nitrogen within the bubble only starts to affect bubble dynamics near the very end of the initial collapse, leading to an incomplete collapse and strong rebound for the mW water model. Although nitrogen is non-condensable at 300 K, it becomes highly compressed and reaches a liquid-like density near the collapse point. We find that the dissolution of nitrogen is much slower than the movement of the collapsing water front, and the re-expansion of the dense nitrogen droplet gives rise to bubble rebound. The incompatibility of the collapse and dissolution time scales should be considered for continuum-scale modeling of bubble dynamics. We also confirm that the diffusion coefficient for dissolved nitrogen is insensitive to pressure as the liquid transitions from a compressed to a stretched state.

7.
Angew Chem Int Ed Engl ; 61(44): e202209034, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35929949

RESUMEN

With increasing demands for high-performance water sorption materials, metal-organic frameworks (MOFs) have gained considerable attention due to their high maximum uptake capacities. In many cases, however, high overall capacity is not necessarily accomplishing high working capacity under operating conditions, due to insufficient hydrophilicity and/or water stability. Herein, we present a post-synthetic modification (PSM) of MOF-808, with di-sulfonic acids enhancing simultaneously its hydrophilicity and water stability without sacrificing its uptake capacity of ≈30 mmol g-1 . Di-sulfonic acid PSM enabled a shift of the relative humidity (RH) associated with a sharp step in water vapor sorption from 35-40 % RH in MOF-808 to below 25 % RH. While MOF-808 lost uptake capacity and crystallinity over multiple sorption/desorption cycles, the di-sulfonic acid PSM MOF-808 retained >80 % of the original capacity. PSM MOF-808 exhibited good hydrothermal stability up to 60 °C and high swing capacity.

8.
Nat Mater ; 19(4): 443-449, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32094494

RESUMEN

Zeolite MFI is a widely used catalyst and adsorbent that also holds promise as a thin-film membrane. The discovery of nanometre-thick two-dimensional (2D) MFI nanosheets has facilitated methods for thin-film zeolite fabrication that open new horizons for membrane science and engineering. However, the crystal structure of 2D-MFI nanosheets and their relationship to separation performance remain elusive. Using transmission electron microscopy, we find that one- to few-unit-cell-wide intergrowths of zeolite MEL exist within 2D-MFI. We identify the planar distribution of these 1D or near-1D-MEL domains, and show that a fraction of nanosheets have high (~25% by volume) MEL content while the majority of nanosheets are MEL-free. Atomistic simulations show that commensurate knitting of 1D-MEL within 2D-MFI creates more rigid and highly selective pores compared to pristine MFI nanosheets, and permeation experiments show a separation factor of 60 using an industrially relevant (undiluted 1 bar xylene mixture) feed. Confined growth in graphite is shown to increase the MEL content in MFI nanosheets. Our observation of these intergrowths suggests strategies for the development of ultra-selective zeolite membranes.

9.
J Chem Phys ; 155(1): 014701, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34241399

RESUMEN

A machine learning (ML) methodology that uses a histogram of interaction energies has been applied to predict gas adsorption in metal-organic frameworks (MOFs) using results from atomistic grand canonical Monte Carlo (GCMC) simulations as training and test data. In this work, the method is first extended to binary mixtures of spherical species, in particular, Xe and Kr. In addition, it is shown that single-component adsorption of ethane and propane can be predicted in good agreement with GCMC simulation using a histogram of the adsorption energies felt by a methyl probe in conjunction with the random forest ML method. The results for propane can be improved by including a small number of MOF textural properties as descriptors. We also discuss the most significant features, which provides physical insight into the most beneficial adsorption energy sites for a given application.

10.
J Am Chem Soc ; 142(20): 9352-9362, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32392052

RESUMEN

Using molecular dynamics simulations and transferable force fields, we designed a series of symmetric triblock amphiphiles (or high-χ block oligomers) comprising incompatible sugar-based (A) and hydrocarbon (B) blocks that can self-assemble into ordered nanostructures with sub-1 nm domains and full domain pitches as small as 1.2 nm. Depending on the chain length and block sequence, the ordered morphologies include lamellae, perforated lamellae, and hexagonally perforated lamellae. The self-assembly of these amphiphiles bears some similarities, but also some differences, to those formed by symmetric triblock polymers. In lamellae formed by ABA amphiphiles, the fraction of B blocks "bridging" adjacent polar domains is nearly unity, much higher than that found for symmetric triblock polymers, and the bridging molecules adopt elongated conformations. In contrast, "looping" conformations are prevalent for A blocks of BAB amphiphiles. Above the order-disorder transition temperature, the disordered states are locally well-segregated yet the B blocks of ABA amphiphiles are significantly less stretched than in the lamellar phases. Analysis of both hydrogen-bonded and nonpolar clusters reveals the bicontinuous nature of these network phases. This simulation study furnishes detailed insights into structure-property relationships for mesophase formation on the 1 nm length scale that will aid further miniaturization for numerous applications.

11.
Phys Chem Chem Phys ; 22(19): 10792-10801, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32249858

RESUMEN

The microscopic picture of ions at the aqueous liquid-vapor interface continues to be an important and active area of research. Both experiments and simulations have shown that certain ions, such as Br- and I-, prefer to adsorb at the interface, but there is not yet a consensus as to the relative importance of various ion-specific properties that influence surface solvation. In a previous study, we systematically explored the effect of ion size on determining whether or not a monovalent ion would adsorb at the surface, and found that, for electrolyte mixtures represented by non-polarizable models, the larger/smaller anions are enriched/depleted at the interface. Here, we extend that study to include temperature effects enabling a van't Hoff analysis of the enthalpic and entropic contributions. We perform configurational-bias Monte Carlo simulations in the Gibbs ensemble to investigate the partitioning of mixtures of differently sized ions at the aqueous liquid-vapor interface from 284.09 K to 347.22 K at a pressure of 1 atm. Ions are represented using our own previously developed models that vary only in size (i.e., the Lennard-Jones σ parameter changes, while all other parameters are held constant across ion types). System properties studied include surface tension, interfacial width, ion surface excess, number density profiles, z-dependent transfer free energy, enthalpy, entropy, and anion-cation coordination numbers.

12.
Nano Lett ; 19(7): 4458-4462, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31188012

RESUMEN

Efforts to create block-polymer-based templates with ultrasmall domain sizes has stimulated integrated experimental and theoretical work in an effort to design and prepare self-assembled systems that can achieve unprecedented domain sizes. We recently reported the utilization of molecular dynamics simulations with transferable force fields to identify amphiphilic oligomers capable of self-assembling into ordered layered and cylindrical morphologies with sub-3 nm domain sizes. Motivated by these predictions, we prepared a sugar-based amphiphile with a hydrocarbon tail that shows thermotropic self-assembly to give a lamellar mesophase with a 3.5 nm pitch and sub-2 nm nanodomains above the melting temperature and below the liquid-crystalline clearing temperature. Complementary atomistic simulations of the molecular assemblies gave morphologies and spacings that were in near-perfect agreement with the experimental results. The effective combination of molecular design, simulation, synthesis, and structural characterization demonstrates the power of this integrated approach for next-generation templating technologies.

13.
Chem Rev ; 117(14): 9755-9803, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28678483

RESUMEN

Hydrogen sulfide removal is a long-standing economic and environmental challenge faced by the oil and gas industries. H2S separation processes using reactive and non-reactive absorption and adsorption, membranes, and cryogenic distillation are reviewed. A detailed discussion is presented on new developments in adsorbents, such as ionic liquids, metal oxides, metals, metal-organic frameworks, zeolites, carbon-based materials, and composite materials; and membrane technologies for H2S removal. This Review attempts to exhaustively compile the existing literature on sour gas sweetening and to identify promising areas for future developments in the field.

14.
J Chem Phys ; 150(12): 124104, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30927875

RESUMEN

A chain-revised Groot-Warren equation of state (crGW-EOS) was developed and tested to describe systems of homo-oligomeric chains in the framework of dissipative particle dynamics (DPD). First, thermodynamic perturbation theory is applied to introduce correction terms that account for the reduction in pressure with an increasing number of bonds at constant bead number density. Then, this EOS is modified by introducing a set of switching functions that yields an accurate second virial coefficient in the low-density limit. The crGW-EOS offers several improvements over the revised Groot-Warren equation of state and Groot-Warren equation of state for chain molecules. We tested the crGW-EOS by using it to predict the pressure of oligomeric systems and the B2 virial coefficient of chain DPD particles for a range of bond lengths. Additionally, a method is developed for determining the strength of cross-interaction parameters between chains of different compositions and sizes and for thermal and athermal mixtures. We explored how different levels of coarse-graining affect the upper-critical solution temperature.

15.
Chemphyschem ; 19(4): 512-518, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29131466

RESUMEN

Purifying sour natural gas streams containing hydrogen sulfide and carbon dioxide has been a long-standing environmental and economic challenge. In the presence of cation-exchanged zeolites, these two acid gases can react to form carbonyl sulfide and water (H2 S+CO2 ⇌H2 O+COS), but this reaction is rarely accounted for. In this work, we carry out reactive first-principles Monte Carlo (RxFPMC) simulations for mixtures of H2 S and CO2 in all-silica and Na-exchanged forms of zeolite beta to understand the governing principles driving the enhanced conversion. The RxFPMC simulations show that the presence of Na+ cations can change the equilibrium constant by several orders of magnitude compared to the gas phase or in all-silica beta. The shift in the reaction equilibrium is caused by very strong interactions of H2 O with Na+ that reduce the reaction enthalpy by about 20 kJ mol-1 . The simulations also demonstrate that the siting of Al atoms in the framework plays an important role. The RxFPMC method presented here is applicable to any chemical conversion in any confined environment, where strong interactions of guest molecules with the host framework and high activation energies limit the use of other computational approaches to study reaction equilibria.

16.
Langmuir ; 34(28): 8245-8254, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29902016

RESUMEN

Understanding solute uptake into soft microstructured materials, such as bilayers and worm-like and spherical micelles, is of interest in the pharmaceutical, agricultural, and personal care industries. To obtain molecular-level insight on the effects of solutes loading into a lamellar phase, we utilize the Shinoda-Devane-Klein (SDK) coarse-grained force field in conjunction with configurational-bias Monte Carlo simulations in the osmotic Gibbs ensemble. The lamellar phase is comprised of a bilayer formed by triethylene glycol mono- n-decyl ether (C10E3) surfactants surrounded by water with a 50:50 surfactant/water weight ratio. We study both the unary adsorption isotherm and the effects on bilayer structure and stability caused by n-nonane, 1-hexanol, and ethyl butyrate at several different reduced reservoir pressures. The nonpolar n-nonane molecules load near the center of the bilayer. In contrast, the polar 1-hexanol and ethyl butyrate molecules both load with their polar bead close to the surfactant head groups. Near the center of the bilayer, none of the solute molecules exhibits a significant orientational preference. Solute molecules adsorbed near the polar groups of the surfactant chains show a preference for orientations perpendicular to the interface, and this alignment with the long axis of the surfactant molecules is most pronounced for 1-hexanol. Loading of n-nonane leads to an increase of the bilayer thickness, but does not affect the surface area per surfactant. Loading of polar additives leads to both lateral and transverse swelling. The reduced Henry's law constants of adsorption (expressed as a molar ratio of additive to surfactant per reduced pressure) are 0.23, 1.4, and 14 for n-nonane, 1-hexanol, and ethyl butyrate, respectively, and it appears that the SDK force field significantly overestimates the ethyl butyrate-surfactant interactions.

17.
J Chem Phys ; 149(7): 072331, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30134689

RESUMEN

Adsorption equilibria of alkane-α, ω-diols (propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol, and hexane-1,6-diol) from aqueous solution onto an all-silica zeolite of the type mordenite framework inverted (MFI, also known as silicalite-1) are obtained by simulations and experiments at T = 323 K and also for pentane-1,5-diol (C5) at 348 and 383 K. After an initial slow rise, isotherms at T = 323 K exhibit steep changes in loading, reaching saturation at 10, 9, 8, and 7 molec/uc as the number of carbon atoms of the diols increases from 3 to 6. The abrupt change in loading corresponds to a minimum in the free energy of adsorption (from vapor to zeolite) that is associated with a rapid rise in the number of hydrogen bonds per sorbate molecule due to the formation of large clusters. For C5 at low loading, the centers-of-mass primarily occupy the channel intersections with oxygens oriented along the straight channels where intermolecular hydrogen bonds are formed. At saturation loading, the C5 centers-of-mass instead occupy the straight and zig-zag channels, and nearly all C5 molecules are involved in a percolating hydrogen-bonding network (this also occurs for C6). With increasing temperature, the C5 isotherm decreases in steepness as the minimum in free energy of adsorption decreases in depth and a less-ordered structure of the adsorbed molecules results in a lower number of diol-diol hydrogen bonds. However, the C5 isotherm does not shift significantly in concentration of the adsorption onset, as the free energies of solvation and adsorption increase by similar and compensating amounts. At T = 323 and 348 K, the steep change for the C5 adsorption isotherm is found to be a phase transition (as indicated by a bimodal distribution of unit cell occupancies at intermediate loading) from a less-dense phase with only small hydrogen-bonded clusters to an ordered solid phase with loadings of 8 molec/uc. At T = 383 K, the sorbates are less ordered, the distribution of occupancies becomes unimodal at intermediate loading, and the loading rises more gradually with concentration. Several different enhanced sampling methods are utilized for these simulations.

18.
Langmuir ; 33(34): 8420-8427, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28767246

RESUMEN

A promising route for sustainable 1-butanol (butanol) production is ABE (acetone, butanol, ethanol) fermentation. However, recovery of the products is challenging because of the low concentrations obtained in the aqueous solution, thus hampering large-scale production of biobutanol. Membrane and adsorbent-based technologies using hydrophobic zeolites are interesting alternatives to traditional separation techniques (e.g., distillation) for energy-efficient separation of butanol from aqueous mixtures. To maximize the butanol over water selectivity of the material, it is important to reduce the number of hydrophilic adsorption sites. This can, for instance, be achieved by reducing the density of lattice defect sites where polar silanol groups are found. The density of silanol defects can be reduced by preparing the zeolite at neutral pH instead of using traditional synthesis solutions with high pH. In this work, binary adsorption of butanol and water in two silicalite-1 films was studied using in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy under equal experimental conditions. One of the films was prepared in fluoride medium, whereas the other one was prepared at high pH using traditional synthesis conditions. The amounts of water and butanol adsorbed from binary vapor mixtures of varying composition were determined at 35 and 50 °C, and the corresponding adsorption selectivities were also obtained. Both samples showed very high selectivities (100-23 000) toward butanol under the conditions studied. The sample having low density of defects, in general, showed ca. a factor 10 times higher butanol selectivity than the sample having a higher density of defects at the same experimental conditions. This difference was due to a much lower adsorption of water in the sample with low density of internal defects. Analysis of molecular simulation trajectories provides insights on the local selectivities in the zeolite channel network and at the film surface.

19.
Langmuir ; 32(8): 2093-101, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26818393

RESUMEN

Anaerobic fermentation can transform carbohydrates to yield a multicomponent mixture comprising mainly of acetone, 1-butanol, and ethanol (ABE) in a typical weight ratio of 3:6:1. Compared to ethanol, 1-butanol, the main product of ABE fermentation, offers significant advantages as a biofuel or a fuel additive. However, the toxicity of 1-butanol for cell cultures requires broth concentrations to be low in 1-butanol (≈1-2 wt %). An energy-efficient recovery method that performs well even at low 1-butanol concentrations is therefore necessary to ensure economic feasibility of the ABE fermentation process. In this work, configurational-bias Monte Carlo simulations in the Gibbs ensemble are performed to probe the adsorption of 1-butanol/water solutions onto all-siliceous zeolites with the framework types MFI and FER. At low solution concentration, the selectivity and capacity for 1-butanol in MFI are larger than those in FER, while the opposite is true for concentrations at or above those of ABE broths. Structural analysis at various loadings sheds light on the different sorbate-sorbate and sorbate-sorbent interactions that govern trends in adsorption in each zeolite.


Asunto(s)
1-Butanol/química , Adsorción , Zeolitas/química , Enlace de Hidrógeno , Método de Montecarlo , Agua/química
20.
Angew Chem Int Ed Engl ; 55(20): 5938-42, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27087591

RESUMEN

Raw natural gas is a complex mixture comprising methane, ethane, other hydrocarbons, hydrogen sulfide, carbon dioxide, nitrogen, and water. For sour gas fields, selective and energy-efficient removal of H2 S is one of the crucial challenges facing the natural-gas industry. Separation using nanoporous materials, such as zeolites, can be an alternative to energy-intensive amine-based absorption processes. Herein, the adsorption of binary H2 S/CH4 and H2 S/C2 H6 mixtures in the all-silica forms of 386 zeolitic frameworks is investigated using Monte Carlo simulations. Adsorption of a five-component mixture is utilized to evaluate the performance of the 16 most promising materials under close-to-real conditions. It is found that depending on the fractions of CH4 , C2 H6 , and CO2 , different sorbents allow for optimal H2 S removal and hydrocarbon recovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA