Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cytotherapy ; 26(5): 444-455, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38363248

RESUMEN

BACKGROUND AIMS: Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical manifestations with the potential to progress to multiple organ dysfunction in severe cases. Extracellular vesicles (EVs) carry a range of biological cargoes, which may be used as biomarkers of disease state. METHODS: An exploratory secondary analysis of the SARITA-2 and SARITA-1 datasets (randomized clinical trials on patients with mild and moderate/severe COVID-19) was performed. Serum-derived EVs were used for proteomic analysis to identify enriched biological processes and key proteins, thus providing insights into differences in disease severity. Serum-derived EVs were separated from patients with COVID-19 by size exclusion chromatography and nanoparticle tracking analysis was used to determine particle concentration and diameter. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed to identify and quantify protein signatures. Bioinformatics and multivariate statistical analysis were applied to distinguish candidate proteins associated with disease severity (mild versus moderate/severe COVID-19). RESULTS: No differences were observed in terms of the concentration and diameter of enriched EVs between mild (n = 14) and moderate/severe (n = 30) COVID-19. A total of 414 proteins were found to be present in EVs, of which 360 were shared while 48 were uniquely present in severe/moderate compared to mild COVID-19. The main biological signatures in moderate/severe COVID-19 were associated with platelet degranulation, exocytosis, complement activation, immune effector activation, and humoral immune response. Von Willebrand factor, serum amyloid A-2 protein, histone H4 and H2A type 2-C, and fibrinogen ß-chain were the most differentially expressed proteins between severity groups. CONCLUSION: Exploratory proteomic analysis of serum-derived EVs from patients with COVID-19 detected key proteins related to immune response and activation of coagulation and complement pathways, which are associated with disease severity. Our data suggest that EV proteins may be relevant biomarkers of disease state and prognosis.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Proteómica , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Humanos , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/inmunología , Vesículas Extracelulares/metabolismo , Proteómica/métodos , Femenino , Masculino , Persona de Mediana Edad , Biomarcadores/sangre , Anciano , Adulto , Espectrometría de Masas en Tándem , Cromatografía Liquida
2.
Crit Care ; 28(1): 165, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750543

RESUMEN

BACKGROUND: Mechanical ventilation, a lifesaving intervention in critical care, can lead to damage in the extracellular matrix (ECM), triggering inflammation and ventilator-induced lung injury (VILI), particularly in conditions such as acute respiratory distress syndrome (ARDS). This review discusses the detailed structure of the ECM in healthy and ARDS-affected lungs under mechanical ventilation, aiming to bridge the gap between experimental insights and clinical practice by offering a thorough understanding of lung ECM organization and the dynamics of its alteration during mechanical ventilation. MAIN TEXT: Focusing on the clinical implications, we explore the potential of precise interventions targeting the ECM and cellular signaling pathways to mitigate lung damage, reduce inflammation, and ultimately improve outcomes for critically ill patients. By analyzing a range of experimental studies and clinical papers, particular attention is paid to the roles of matrix metalloproteinases (MMPs), integrins, and other molecules in ECM damage and VILI. This synthesis not only sheds light on the structural changes induced by mechanical stress but also underscores the importance of cellular responses such as inflammation, fibrosis, and excessive activation of MMPs. CONCLUSIONS: This review emphasizes the significance of mechanical cues transduced by integrins and their impact on cellular behavior during ventilation, offering insights into the complex interactions between mechanical ventilation, ECM damage, and cellular signaling. By understanding these mechanisms, healthcare professionals in critical care can anticipate the consequences of mechanical ventilation and use targeted strategies to prevent or minimize ECM damage, ultimately leading to better patient management and outcomes in critical care settings.


Asunto(s)
Matriz Extracelular , Pulmón , Respiración Artificial , Síndrome de Dificultad Respiratoria , Humanos , Matriz Extracelular/metabolismo , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/fisiopatología , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Pulmón/fisiopatología , Pulmón/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Metaloproteinasas de la Matriz/metabolismo , Animales
3.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175936

RESUMEN

The effects of the administration of mesenchymal stromal cells (MSC) may vary according to the source. We hypothesized that MSC-derived extracellular vesicles (EVs) obtained from bone marrow (BM), adipose (AD), or lung (L) tissues may also lead to different effects in sepsis. We profiled the proteome from EVs as a first step toward understanding their mechanisms of action. Polymicrobial sepsis was induced in C57BL/6 mice by cecal ligation and puncture (SEPSIS) and SHAM (control) animals only underwent laparotomy. Twenty-four hours after surgery, animals in the SEPSIS group were randomized to receive saline or 3 × 106 MSC-derived EVs from BM, AD, or L. The diffuse alveolar damage was decreased with EVs from all three sources. In kidneys, BM-, AD-, and L-EVs reduced edema and expression of interleukin-18. Kidney injury molecule-1 expression decreased only in BM- and L-EVs groups. In the liver, only BM-EVs reduced congestion and cell infiltration. The size and number of EVs from different sources were not different, but the proteome of the EVs differed. BM-EVs were enriched for anti-inflammatory proteins compared with AD-EVs and L-EVs. In conclusion, BM-EVs were associated with less organ damage compared with the other sources of EVs, which may be related to differences detected in their proteome.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Sepsis , Animales , Ratones , Vesículas Extracelulares/metabolismo , Pulmón , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Proteoma/metabolismo , Sepsis/metabolismo
4.
Subst Abus ; 43(1): 520-526, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34283709

RESUMEN

Background: Responses to problem substance use have largely focused on illicit drugs, but reports on rising prescription drug misuse worldwide raise questions about their combined use with alcohol and potential consequences. The current study assessed prevalence of alcohol in conjunction with nonmedical opioid and benzodiazepine use across a nationally representative sample of adults in Brazil. Methods: Cross-sectional data on prevalence were estimated from the 2015 Brazilian Household Survey on Substance Use. We estimated past month nonmedical use of benzodiazepines and alcohol and past month nonmedical use of opioids and alcohol among adults who reported any past-year alcohol use. Zero-inflated Poisson models assessed independent correlates of alcohol and nonmedical opioid use, and alcohol and nonmedical benzodiazepine use. Results: Among adults who reported past year alcohol use, 0.4% (N = 257,051) reported past month alcohol and non-medical benzodiazepine use, and 0.5% (N = 337,333) reported past month alcohol and non-medical opioid use. Factors independently associated with co-use of alcohol and benzodiazepines included having depression (adjusted prevalence ratio (aPR):4.61 (95%CI 1.76-12.08)), anxiety (aPR:4.21 (95%CI 1.59-11.16)) and tobacco use (aPR: 5.48 (95%CI 2.26-13.27)). Factors associated with past-month alcohol and opioid use included having experienced physical or a threat of violence (aPR: 4.59 (95%CI 1.89-11.14)), and tobacco use (aPR:2.81(95%CI:1.29-6.12)). Conclusions: Co-use of prescription drugs with alcohol remains relatively rare among Brazilians, but findings point to a unique profile of persons at risk. Results of this study are important in light of changing dynamics and international markets of prescription drugs and the need for more research on use of these substances on a global scale.


Asunto(s)
Trastornos Relacionados con Opioides , Mal Uso de Medicamentos de Venta con Receta , Medicamentos bajo Prescripción , Adulto , Analgésicos Opioides/uso terapéutico , Benzodiazepinas , Brasil/epidemiología , Estudios Transversales , Etanol , Humanos , Trastornos Relacionados con Opioides/tratamiento farmacológico , Prevalencia , Estados Unidos
5.
Eur Respir J ; 58(1)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33361100

RESUMEN

BACKGROUND: Nitazoxanide is widely available and exerts broad-spectrum antiviral activity in vitro. However, there is no evidence of its impact on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: In a multicentre, randomised, double-blind, placebo-controlled trial, adult patients presenting up to 3 days after onset of coronavirus disease 2019 (COVID-19) symptoms (dry cough, fever and/or fatigue) were enrolled. After confirmation of SARS-CoV-2 infection using reverse transcriptase PCR on a nasopharyngeal swab, patients were randomised 1:1 to receive either nitazoxanide (500 mg) or placebo, three times daily, for 5 days. The primary outcome was complete resolution of symptoms. Secondary outcomes were viral load, laboratory tests, serum biomarkers of inflammation and hospitalisation rate. Adverse events were also assessed. RESULTS: From June 8 to August 20, 2020, 1575 patients were screened. Of these, 392 (198 placebo, 194 nitazoxanide) were analysed. Median (interquartile range) time from symptom onset to first dose of study drug was 5 (4-5) days. At the 5-day study visit, symptom resolution did not differ between the nitazoxanide and placebo arms. Swabs collected were negative for SARS-CoV-2 in 29.9% of patients in the nitazoxanide arm versus 18.2% in the placebo arm (p=0.009). Viral load was reduced after nitazoxanide compared to placebo (p=0.006). The percentage viral load reduction from onset to end of therapy was higher with nitazoxanide (55%) than placebo (45%) (p=0.013). Other secondary outcomes were not significantly different. No serious adverse events were observed. CONCLUSIONS: In patients with mild COVID-19, symptom resolution did not differ between nitazoxanide and placebo groups after 5 days of therapy. However, early nitazoxanide therapy was safe and reduced viral load significantly.


Asunto(s)
COVID-19 , Adulto , Humanos , Nitrocompuestos , SARS-CoV-2 , Tiazoles , Resultado del Tratamiento
6.
Crit Care Med ; 49(1): 140-150, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33060501

RESUMEN

OBJECTIVES: We hypothesized that a time-controlled adaptive ventilation strategy would open and stabilize alveoli by controlling inspiratory and expiratory duration. Time-controlled adaptive ventilation was compared with volume-controlled ventilation at the same levels of mean airway pressure and positive end-release pressure (time-controlled adaptive ventilation)/positive end-expiratory pressure (volume-controlled ventilation) in a Pseudomonas aeruginosa-induced pneumonia model. DESIGN: Animal study. SETTING: Laboratory investigation. SUBJECTS: Twenty-one Wistar rats. INTERVENTIONS: Twenty-four hours after pneumonia induction, Wistar rats (n = 7) were ventilated with time-controlled adaptive ventilation (tidal volume = 8 mL/kg, airway pressure release ventilation for a Thigh = 0.75-0.85 s, release pressure (Plow) set at 0 cm H2O, and generating a positive end-release pressure = 1.6 cm H2O applied for Tlow = 0.11-0.14 s). The expiratory flow was terminated at 75% of the expiratory flow peak. An additional 14 animals were ventilated using volume-controlled ventilation, maintaining similar time-controlled adaptive ventilation levels of positive end-release pressure (positive end-expiratory pressure=1.6 cm H2O) and mean airway pressure = 10 cm H2O. Additional nonventilated animals (n = 7) were used for analysis of molecular biology markers. MEASUREMENTS AND MAIN RESULTS: After 1 hour of mechanical ventilation, the heterogeneity score, the expression of pro-inflammatory biomarkers interleukin-6 and cytokine-induced neutrophil chemoattractant-1 in lung tissue were significantly lower in the time-controlled adaptive ventilation than volume-controlled ventilation with similar mean airway pressure groups (p = 0.008, p = 0.011, and p = 0.011, respectively). Epithelial cell integrity, measured by E-cadherin tissue expression, was higher in time-controlled adaptive ventilation than volume-controlled ventilation with similar mean airway pressure (p = 0.004). Time-controlled adaptive ventilation animals had bacteremia counts lower than volume-controlled ventilation with similar mean airway pressure animals, while time-controlled adaptive ventilation and volume-controlled ventilation with similar positive end-release pressure animals had similar colony-forming unit counts. In addition, lung edema and cytokine-induced neutrophil chemoattractant-1 gene expression were more reduced in time-controlled adaptive ventilation than volume-controlled ventilation with similar positive end-release pressure groups. CONCLUSIONS: In the model of pneumonia used herein, at the same tidal volume and mean airway pressure, time-controlled adaptive ventilation, compared with volume-controlled ventilation, was associated with less lung damage and bacteremia and reduced gene expression of mediators associated with inflammation.


Asunto(s)
Neumonía Bacteriana/terapia , Respiración Artificial/métodos , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Wistar , Resultado del Tratamiento
7.
Respir Res ; 22(1): 214, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330283

RESUMEN

BACKGROUND: We evaluated the effects of abrupt versus gradual PEEP decrease, combined with standard versus high-volume fluid administration, on cardiac function, as well as lung and kidney damage in an established model of mild-moderate acute respiratory distress syndrome (ARDS). METHODS: Wistar rats received endotoxin intratracheally. After 24 h, they were treated with Ringer's lactate at standard (10 mL/kg/h) or high (30 mL/kg/h) dose. For 30 min, all animals were mechanically ventilated with tidal volume = 6 mL/kg and PEEP = 9 cmH2O (to keep alveoli open), then randomized to undergo abrupt or gradual (0.2 cmH2O/min for 30 min) PEEP decrease from 9 to 3 cmH2O. Animals were then further ventilated for 10 min at PEEP = 3 cmH2O, euthanized, and their lungs and kidneys removed for molecular biology analysis. RESULTS: At the end of the experiment, left and right ventricular end-diastolic areas were greater in animals treated with high compared to standard fluid administration, regardless of PEEP decrease rate. However, pulmonary arterial pressure, indicated by the pulmonary acceleration time (PAT)/pulmonary ejection time (PET) ratio, was higher in abrupt compared to gradual PEEP decrease, independent of fluid status. Animals treated with high fluids and abrupt PEEP decrease exhibited greater diffuse alveolar damage and higher expression of interleukin-6 (a pro-inflammatory marker) and vascular endothelial growth factor (a marker of endothelial cell damage) compared to the other groups. The combination of standard fluid administration and gradual PEEP decrease increased zonula occludens-1 expression, suggesting epithelial cell preservation. Expression of club cell-16 protein, an alveolar epithelial cell damage marker, was higher in abrupt compared to gradual PEEP decrease groups, regardless of fluid status. Acute kidney injury score and gene expression of kidney injury molecule-1 were higher in the high versus standard fluid administration groups, regardless of PEEP decrease rate. CONCLUSION: In the ARDS model used herein, decreasing PEEP abruptly increased pulmonary arterial hypertension, independent of fluid status. The combination of abrupt PEEP decrease and high fluid administration led to greater lung and kidney damage. This information adds to the growing body of evidence that supports gradual transitioning of ventilatory patterns and warrants directing additional investigative effort into vascular and deflation issues that impact lung protection.


Asunto(s)
Corazón/fisiopatología , Riñón/fisiopatología , Pulmón/fisiopatología , Respiración con Presión Positiva/métodos , Síndrome de Dificultad Respiratoria/fisiopatología , Equilibrio Hidroelectrolítico/fisiología , Animales , Corazón/efectos de los fármacos , Infusiones Intravenosas , Riñón/efectos de los fármacos , Pulmón/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/terapia , Lactato de Ringer/administración & dosificación , Lactato de Ringer/toxicidad , Equilibrio Hidroelectrolítico/efectos de los fármacos
8.
Br J Anaesth ; 127(3): 353-364, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34217468

RESUMEN

COVID-19 pneumonia is associated with hypoxaemic respiratory failure, ranging from mild to severe. Because of the worldwide shortage of ICU beds, a relatively high number of patients with respiratory failure are receiving prolonged noninvasive respiratory support, even when their clinical status would have required invasive mechanical ventilation. There are few experimental and clinical data reporting that vigorous breathing effort during spontaneous ventilation can worsen lung injury and cause a phenomenon that has been termed patient self-inflicted lung injury (P-SILI). The aim of this narrative review is to provide an overview of P-SILI pathophysiology and the role of noninvasive respiratory support in COVID-19 pneumonia. Respiratory mechanics, vascular compromise, viscoelastic properties, lung inhomogeneity, work of breathing, and oesophageal pressure swings are discussed. The concept of P-SILI has been widely investigated in recent years, but controversies persist regarding its mechanisms. To minimise the risk of P-SILI, intensivists should better understand its underlying pathophysiology to optimise the type of noninvasive respiratory support provided to patients with COVID-19 pneumonia, and decide on the optimal timing of intubation for these patients.


Asunto(s)
Lesión Pulmonar Aguda/epidemiología , Lesión Pulmonar Aguda/terapia , Anestesiólogos , COVID-19 , Ventilación no Invasiva , Respiración Artificial , Lesión Pulmonar Inducida por Ventilación Mecánica/epidemiología , Lesión Pulmonar Inducida por Ventilación Mecánica/terapia , Humanos , Ventilación no Invasiva/efectos adversos , Respiración con Presión Positiva/efectos adversos , Insuficiencia Respiratoria , Mecánica Respiratoria
9.
Anesthesiology ; 132(2): 307-320, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31939846

RESUMEN

BACKGROUND: Pressure-support ventilation may worsen lung damage due to increased dynamic transpulmonary driving pressure. The authors hypothesized that, at the same tidal volume (VT) and dynamic transpulmonary driving pressure, pressure-support and pressure-controlled ventilation would yield comparable lung damage in mild lung injury. METHODS: Male Wistar rats received endotoxin intratracheally and, after 24 h, were ventilated in pressure-support mode. Rats were then randomized to 2 h of pressure-controlled ventilation with VT, dynamic transpulmonary driving pressure, dynamic transpulmonary driving pressure, and inspiratory time similar to those of pressure-support ventilation. The primary outcome was the difference in dynamic transpulmonary driving pressure between pressure-support and pressure-controlled ventilation at similar VT; secondary outcomes were lung and diaphragm damage. RESULTS: At VT = 6 ml/kg, dynamic transpulmonary driving pressure was higher in pressure-support than pressure-controlled ventilation (12.0 ± 2.2 vs. 8.0 ± 1.8 cm H2O), whereas static transpulmonary driving pressure did not differ (6.7 ± 0.6 vs. 7.0 ± 0.3 cm H2O). Diffuse alveolar damage score and gene expression of markers associated with lung inflammation (interleukin-6), alveolar-stretch (amphiregulin), epithelial cell damage (club cell protein 16), and fibrogenesis (metalloproteinase-9 and type III procollagen), as well as diaphragm inflammation (tumor necrosis factor-α) and proteolysis (muscle RING-finger-1) were comparable between groups. At similar dynamic transpulmonary driving pressure, as well as dynamic transpulmonary driving pressure and inspiratory time, pressure-controlled ventilation increased VT, static transpulmonary driving pressure, diffuse alveolar damage score, and gene expression of markers of lung inflammation, alveolar stretch, fibrogenesis, diaphragm inflammation, and proteolysis compared to pressure-support ventilation. CONCLUSIONS: In the mild lung injury model use herein, at the same VT, pressure-support compared to pressure-controlled ventilation did not affect biologic markers. However, pressure-support ventilation was associated with a major difference between static and dynamic transpulmonary driving pressure; when the same dynamic transpulmonary driving pressure and inspiratory time were used for pressure-controlled ventilation, greater lung and diaphragm injury occurred compared to pressure-support ventilation.


Asunto(s)
Diafragma/lesiones , Diafragma/fisiopatología , Lesión Pulmonar/etiología , Lesión Pulmonar/fisiopatología , Respiración con Presión Positiva/efectos adversos , Respiración con Presión Positiva/métodos , Animales , Masculino , Respiración con Presión Positiva/normas , Ratas , Ratas Wistar , Mecánica Respiratoria/fisiología , Volumen de Ventilación Pulmonar/fisiología
10.
Crit Care ; 24(1): 284, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493362

RESUMEN

BACKGROUND: We dissected total power into its primary components to resolve its relative contributions to tissue damage (VILI). We hypothesized that driving power or elastic (dynamic) power offers more precise VILI risk indicators than raw total power. The relative correlations of these three measures of power with VILI-induced histologic changes and injury biomarkers were determined using a rodent model of acute respiratory distress syndrome (ARDS). Herein, we have significantly extended the scope of our previous research. METHODS: Data analyses were performed in male Wistar rats that received endotoxin intratracheally to induce ARDS. After 24 h, they were randomized to 1 h of volume-controlled ventilation with low VT = 6 ml/kg and different PEEP levels (3, 5.5, 7.5, 9.5, and 11 cmH2O). Applied levels of driving power, dynamic power inclusive of PEEP, and total power were correlated with VILI indicators [lung histology and biological markers associated with inflammation (interleukin-6), alveolar stretch (amphiregulin), and epithelial (club cell protein (CC)-16) and endothelial (intercellular adhesion molecule-1) cell damage in lung tissue]. RESULTS: Driving power was higher at PEEP-11 than other PEEP levels. Dynamic power and total power increased progressively from PEEP-5.5 and PEEP-7.5, respectively, to PEEP-11. Driving power, dynamic power, and total power each correlated with the majority of VILI indicators. However, when correlations were performed from PEEP-3 to PEEP-9.5, no relationships were observed between driving power and VILI indicators, whereas dynamic power and total power remained well correlated with CC-16 expression, alveolar collapse, and lung hyperinflation. CONCLUSIONS: In this mild-moderate ARDS model, dynamic power, not driving power alone, emerged as the key promoter of VILI. Moreover, hazards from driving power were conditioned by the requirement to pass a tidal stress threshold. When estimating VILI hazard from repeated mechanical strains, PEEP must not be disregarded as a major target for modification.


Asunto(s)
Tejido Elástico/fisiopatología , Síndrome de Dificultad Respiratoria/complicaciones , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología , Animales , Modelos Animales de Enfermedad , Ratas , Ratas Wistar , Síndrome de Dificultad Respiratoria/fisiopatología , Mecánica Respiratoria/fisiología , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología
11.
Respir Res ; 20(1): 155, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311539

RESUMEN

BACKGROUND: Conflicting data have reported beneficial effects of crystalloids, hyper-oncotic albumin (20%ALB), and iso-oncotic albumin (5%ALB) in critically ill patients. Although hyper-oncotic albumin may minimize lung injury, recent studies have shown that human albumin may lead to kidney damage proportional to albumin concentration. In this context, we compared the effects of Ringer's lactate (RL), 20%ALB, and 5%ALB, all titrated according to similar hemodynamic goals, on pulmonary function, lung and kidney histology, and molecular biology in experimental acute lung injury (ALI). METHODS: Male Wistar rats received Escherichia coli lipopolysaccharide intratracheally (n = 24) to induce ALI. After 24 h, animals were anesthetized and randomly assigned to receive RL, 20%ALB, or 5%ALB (n = 6/group) to maintain hemodynamic stability (distensibility index of inferior vena cava < 25%, mean arterial pressure > 65 mmHg). Rats were then mechanically ventilated for 6 h. Six animals, which received neither ventilation nor fluids (NV), were used for molecular biology analyses. RESULTS: The total fluid volume infused was higher in RL compared to 5%ALB and 20%ALB (median [interquartile range], 10.8[8.2-33.2] vs. 4.8[3.6-7.7] and 4.3[3.9-6.6] mL, respectively; p = 0.02 and p = 0.003). B-line counts on lung ultrasound (p < 0.0001 and p = 0.0002) and serum lactate levels (p = 0.01 and p = 0.01) were higher in RL than 5%ALB and 20%ALB. Diffuse alveolar damage score was lower in 5%ALB (10.5[8.5-12]) and 20%ALB (10.5[8.5-14]) than RL (16.5[12.5-20.5]) (p < 0.05 and p = 0.03, respectively), while acute kidney injury score was lower in 5%ALB (9.5[6.5-10]) than 20%ALB (18[15-28.5], p = 0.0006) and RL (16 [15-19], p = 0.04). In lung tissue, mRNA expression of interleukin (IL)-6 was higher in RL (59.1[10.4-129.3]) than in 5%ALB (27.0[7.8-49.7], p = 0.04) or 20%ALB (3.7[7.8-49.7], p = 0.03), and IL-6 protein levels were higher in RL than 5%ALB and 20%ALB (p = 0.026 and p = 0.021, respectively). In kidney tissue, mRNA expression and protein levels of kidney injury molecule (KIM)-1 were lower in 5%ALB than RL and 20%ALB, while nephronectin expression increased (p = 0.01 and p = 0.01), respectively. CONCLUSIONS: In a rat model of ALI, both iso-oncotic and hyper-oncotic albumin solutions were associated with less lung injury compared to Ringer's lactate. However, hyper-oncotic albumin resulted in greater kidney damage than iso-oncotic albumin. This experimental study is a step towards future clinical designs.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Albúminas/toxicidad , Soluciones Cristaloides/toxicidad , Animales , Masculino , Distribución Aleatoria , Ratas , Ratas Wistar
12.
Anesthesiology ; 130(5): 767-777, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30870161

RESUMEN

BACKGROUND: This study hypothesized that, in experimental mild acute respiratory distress syndrome, lung damage caused by high tidal volume (VT) could be attenuated if VT increased slowly enough to progressively reduce mechanical heterogeneity and to allow the epithelial and endothelial cells, as well as the extracellular matrix of the lung to adapt. For this purpose, different strategies of approaching maximal VT were tested. METHODS: Sixty-four Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, animals were randomly assigned to receive mechanical ventilation with VT = 6 ml/kg for 2 h (control); VT = 6 ml/kg during hour 1 followed by an abrupt increase to VT = 22 ml/kg during hour 2 (no adaptation time); VT = 6 ml/kg during the first 30 min followed by a gradual VT increase up to 22 ml/kg for 30 min, then constant VT = 22 ml/kg during hour 2 (shorter adaptation time); and a more gradual VT increase, from 6 to 22 ml/kg during hour 1 followed by VT = 22 ml/kg during hour 2 (longer adaptation time). All animals were ventilated with positive end-expiratory pressure of 3 cm H2O. Nonventilated animals were used for molecular biology analysis. RESULTS: At 2 h, diffuse alveolar damage score and heterogeneity index were greater in the longer adaptation time group than in the control and shorter adaptation time animals. Gene expression of interleukin-6 favored the shorter (median [interquartile range], 12.4 [9.1-17.8]) adaptation time compared with longer (76.7 [20.8 to 95.4]; P = 0.02) and no adaptation (65.5 [18.1 to 129.4]) time (P = 0.02) strategies. Amphiregulin, metalloproteinase-9, club cell secretory protein-16, and syndecan showed similar behavior. CONCLUSIONS: In experimental mild acute respiratory distress syndrome, lung damage in the shorter adaptation time group compared with the no adaptation time group was attenuated in a time-dependent fashion by preemptive adaptation of the alveolar epithelial cells and extracellular matrix. Extending the adaptation period increased cumulative power and did not prevent lung damage, because it may have exposed animals to injurious strain earlier and for a longer time, thereby negating any adaptive benefit.


Asunto(s)
Lesión Pulmonar/prevención & control , Volumen de Ventilación Pulmonar , Adaptación Fisiológica , Animales , Interleucina-6/genética , Masculino , Respiración con Presión Positiva , Ratas , Ratas Wistar , Síndrome de Dificultad Respiratoria/complicaciones , Volumen de Ventilación Pulmonar/fisiología
13.
Anesthesiology ; 128(6): 1193-1206, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29489470

RESUMEN

BACKGROUND: The authors hypothesized that low tidal volume (VT) would minimize ventilator-induced lung injury regardless of the degree of mechanical power. The authors investigated the impact of power, obtained by different combinations of VT and respiratory rate (RR), on ventilator-induced lung injury in experimental mild acute respiratory distress syndrome (ARDS). METHODS: Forty Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, 32 rats were randomly assigned to be mechanically ventilated (2 h) with a combination of different VT (6 ml/kg and 11 ml/kg) and RR that resulted in low and high power. Power was calculated as energy (ΔP,L/E,L) × RR (ΔP,L = transpulmonary driving pressure; E,L = lung elastance), and was threefold higher in high than in low power groups. Eight rats were not mechanically ventilated and used for molecular biology analysis. RESULTS: Diffuse alveolar damage score, which represents the severity of edema, atelectasis, and overdistension, was increased in high VT compared to low VT, in both low (low VT: 11 [9 to 14], high VT: 18 [15 to 20]) and high (low VT: 19 [16 to 25], high VT: 29 [27 to 30]) power groups. At high VT, interleukin-6 and amphiregulin expressions were higher in high-power than in low-power groups. At high power, amphiregulin and club cell protein 16 expressions were higher in high VT than in low VT. Mechanical energy and power correlated well with diffuse alveolar damage score and interleukin-6, amphiregulin, and club cell protein 16 expression. CONCLUSIONS: In experimental mild ARDS, even at low VT, high mechanical power promoted ventilator-induced lung injury. To minimize ventilator-induced lung injury, low VT should be combined with low power.


Asunto(s)
Síndrome de Dificultad Respiratoria/fisiopatología , Mecánica Respiratoria/fisiología , Mucosa Respiratoria/fisiopatología , Volumen de Ventilación Pulmonar/fisiología , Animales , Distribución Aleatoria , Ratas , Ratas Wistar , Síndrome de Dificultad Respiratoria/patología , Mucosa Respiratoria/patología
14.
Crit Care ; 22(1): 249, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30290827

RESUMEN

BACKGROUND: Ischemic stroke causes brain inflammation, which we postulate may result in lung damage. Several studies have focused on stroke-induced immunosuppression and lung infection; however, the possibility that strokes may trigger lung inflammation has been overlooked. We hypothesized that even focal ischemic stroke might induce acute systemic and pulmonary inflammation, thus altering respiratory parameters, lung tissue integrity, and alveolar macrophage behavior. METHODS: Forty-eight Wistar rats were randomly assigned to ischemic stroke (Stroke) or sham surgery (Sham). Lung function, histology, and inflammation in the lung, brain, bronchoalveolar lavage fluid (BALF), and circulating plasma were evaluated at 24 h. In vitro, alveolar macrophages from naïve rats (unstimulated) were exposed to serum or BALF from Sham or Stroke animals to elucidate possible mechanisms underlying alterations in alveolar macrophage phagocytic capability. Alveolar macrophages and epithelial and endothelial cells of Sham and Stroke animals were also isolated for evaluation of mRNA expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α. RESULTS: Twenty-four hours following ischemic stroke, the tidal volume, expiratory time, and mean inspiratory flow were increased. Compared to Sham animals, the respiratory rate and duty cycle during spontaneous breathing were reduced, but this did not affect lung mechanics during mechanical ventilation. Lungs from Stroke animals showed clear evidence of increased diffuse alveolar damage, pulmonary edema, and inflammation markers. This was associated with an increase in ultrastructural damage, as evidenced by injury to type 2 pneumocytes and endothelial cells, cellular infiltration, and enlarged basement membrane thickness. Protein levels of proinflammatory mediators were documented in the lung, brain, and plasma (TNF-α and IL-6) and in BALF (TNF-α). The phagocytic ability of macrophages was significantly reduced. Unstimulated macrophages isolated from naïve rats only upregulated expression of TNF-α and IL-6 following exposure to serum from Stroke rats. Exposure to BALF from Stroke or Sham animals did not change alveolar macrophage behavior, or gene expression of TNF-α and IL-6. IL-6 expression was increased in macrophages and endothelial cells from Stroke animals. CONCLUSIONS: In rats, focal ischemic stroke is associated with brain-lung crosstalk, leading to increased pulmonary damage and inflammation, as well as reduced alveolar macrophage phagocytic capability, which seems to be promoted by systemic inflammation.


Asunto(s)
Lesión Pulmonar/etiología , Macrófagos Alveolares/patología , Fagocitos/patología , Accidente Cerebrovascular/complicaciones , Animales , Isquemia Encefálica/complicaciones , Isquemia Encefálica/fisiopatología , Modelos Animales de Enfermedad , Terapia de Inmunosupresión/efectos adversos , Interleucina-6/análisis , Interleucina-6/sangre , Lesión Pulmonar/sangre , Lesión Pulmonar/patología , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/veterinaria , ARN Mensajero/análisis , ARN Mensajero/sangre , Ratas , Ratas Wistar/inmunología , Ratas Wistar/metabolismo , Estadísticas no Paramétricas , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/fisiopatología , Factor de Necrosis Tumoral alfa/análisis , Factor de Necrosis Tumoral alfa/sangre
15.
Eur J Anaesthesiol ; 35(4): 298-306, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29324568

RESUMEN

BACKGROUND: Harmful effects of spontaneous breathing have been shown in experimental severe acute respiratory distress syndrome (ARDS). However, in the clinical setting, spontaneous respiration has been indicated only in mild ARDS. To date, no study has compared the effects of spontaneous assisted breathing with those of fully controlled mechanical ventilation at different levels of positive end-expiratory pressure (PEEP) on lung injury in ARDS. OBJECTIVE: To compare the effects of assisted pressure support ventilation (PSV) with pressure-controlled ventilation (PCV) on lung function, histology and biological markers at two different PEEP levels in mild ARDS in rats. DESIGN: Randomised controlled experimental study. SETTING: Basic science laboratory. PARTICIPANTS: Thirty-five Wistar rats (weight ±â€ŠSD, 310 ±â€Š19) g received Escherichia coli lipopolysaccharide (LPS) intratracheally. After 24 h, the animals were anaesthetised and randomly allocated to either PCV (n=14) or PSV (n=14) groups. Each group was further assigned to PEEP = 2 cmH2O or PEEP = 5 cmH2O. Tidal volume was kept constant (≈6 ml kg). Additional nonventilated animals (n=7) were used as a control for postmortem analysis. MAIN OUTCOME MEASURES: Ventilatory and mechanical parameters, arterial blood gases, diffuse alveolar damage score, epithelial integrity measured by E-cadherin tissue expression, and biological markers associated with inflammation (IL-6 and cytokine-induced neutrophil chemoattractant, CINC-1) and type II epithelial cell damage (surfactant protein-B) were evaluated. RESULTS: In both PCV and PSV, peak transpulmonary pressure was lower, whereas E-cadherin tissue expression, which is related to epithelial integrity, was higher at PEEP = 5 cmH2O than at PEEP = 2 cmH2O. In PSV, PEEP = 5 cmH2O compared with PEEP = 2 cmH2O was associated with significantly reduced diffuse alveolar damage score [median (interquartile range), 11 (8.5 to 13.5) vs. 23 (19 to 26), P = 0.005] and expressions of IL-6 and CINC-1 (P = 0.02 for both), whereas surfactant protein-B mRNA expression increased (P = 0.03). These changes suggested less type II epithelial cell damage at a PEEP of 5 cmH2O. Peak transpulmonary pressure correlated positively with IL-6 [Spearman's rho (ρ) = 0.62, P = 0.0007] and CINC-1 expressions (ρ = 0.50, P = 0.01) and negatively with E-cadherin expression (ρ = -0.67, P = 0.0002). CONCLUSION: During PSV, PEEP of 5 cmH2O, but not a PEEP of 2 cmH2O, reduced lung damage and inflammatory markers while maintaining epithelial cell integrity.


Asunto(s)
Respiración con Presión Positiva/métodos , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/terapia , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/terapia , Animales , Cadherinas/biosíntesis , Respiración con Presión Positiva/tendencias , Distribución Aleatoria , Ratas , Ratas Wistar , Síndrome de Dificultad Respiratoria/patología , Resultado del Tratamiento , Lesión Pulmonar Inducida por Ventilación Mecánica/patología
16.
Anesth Analg ; 125(4): 1364-1374, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28759484

RESUMEN

BACKGROUND: Intraoperative mechanical ventilation may yield lung injury. To date, there is no consensus regarding the best ventilator strategy for abdominal surgery. We aimed to investigate the impact of the mechanical ventilation strategies used in 2 recent trials (Intraoperative Protective Ventilation [IMPROVE] trial and Protective Ventilation using High versus Low PEEP [PROVHILO] trial) on driving pressure (ΔPRS), mechanical power, and lung damage in a model of open abdominal surgery. METHODS: Thirty-five Wistar rats were used, of which 28 were anesthetized, and a laparotomy was performed with standardized bowel manipulation. Postoperatively, animals (n = 7/group) were randomly assigned to 4 hours of ventilation with: (1) tidal volume (VT) = 7 mL/kg and positive end-expiratory pressure (PEEP) = 1 cm H2O without recruitment maneuvers (RMs) (low VT/low PEEP/RM-), mimicking the low-VT/low-PEEP strategy of PROVHILO; (2) VT = 7 mL/kg and PEEP = 3 cm H2O with RMs before laparotomy and hourly thereafter (low VT/moderate PEEP/4 RM+), mimicking the protective ventilation strategy of IMPROVE; (3) VT = 7 mL/kg and PEEP = 6 cm H2O with RMs only before laparotomy (low VT/high PEEP/1 RM+), mimicking the strategy used after intubation and before extubation in PROVHILO; or (4) VT = 14 mL/kg and PEEP = 1 cm H2O without RMs (high VT/low PEEP/RM-), mimicking conventional ventilation used in IMPROVE. Seven rats were not tracheotomized, operated, or mechanically ventilated, and constituted the healthy nonoperated and nonventilated controls. RESULTS: Low VT/moderate PEEP/4 RM+ and low VT/high PEEP/1 RM+, compared to low VT/low PEEP/RM- and high VT/low PEEP/RM-, resulted in lower ΔPRS (7.1 ± 0.8 and 10.2 ± 2.1 cm H2O vs 13.9 ± 0.9 and 16.9 ± 0.8 cm H2O, respectively; P< .001) and less mechanical power (63 ± 7 and 79 ± 20 J/min vs 110 ± 10 and 120 ± 20 J/min, respectively; P = .007). Low VT/high PEEP/1 RM+ was associated with less alveolar collapse than low VT/low PEEP/RM- (P = .03). E-cadherin expression was higher in low VT/moderate PEEP/4 RM+ than in low VT/low PEEP/RM- (P = .013) or high VT/low PEEP/RM- (P = .014). The extent of alveolar collapse, E-cadherin expression, and tumor necrosis factor-alpha correlated with ΔPRS (r = 0.54 [P = .02], r = -0.48 [P = .05], and r = 0.59 [P = .09], respectively) and mechanical power (r = 0.57 [P = .02], r = -0.54 [P = .02], and r = 0.48 [P = .04], respectively). CONCLUSIONS: In this model of open abdominal surgery based on the mechanical ventilation strategies used in IMPROVE and PROVHILO trials, lower mechanical power and its surrogate ΔPRS were associated with reduced lung damage.


Asunto(s)
Laparotomía/métodos , Respiración con Presión Positiva/métodos , Mecánica Respiratoria/fisiología , Abdomen/fisiología , Abdomen/cirugía , Animales , Biomarcadores , Distribución Aleatoria , Ratas , Ratas Wistar , Respiración Artificial/métodos
17.
Anesth Analg ; 125(2): 491-498, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28277329

RESUMEN

BACKGROUND: Volatile anesthetics modulate inflammation in acute respiratory distress syndrome (ARDS). However, it is unclear whether they act differently depending on ARDS etiology. We hypothesized that the in vivo and in vitro effects of sevoflurane and isoflurane on lung damage would not differ in pulmonary (p) and extrapulmonary (exp) ARDS. METHODS: Twenty-four Wistar rats were randomized to undergo general anesthesia (1-2 minutes) with sevoflurane and isoflurane. Animals were then further randomized to receive Escherichia coli lipopolysaccharide (LPS) intratracheally (ARDSp) or intraperitoneally (ARDSexp), and 24 hours after ARDS induction, they were subjected to 60 minutes of sevoflurane or isoflurane anesthesia at 1 minimal alveolar concentration. The primary outcome measure was interleukin (IL)-6 mRNA expression in lung tissue. Secondary outcomes included gas exchange, lung mechanics, histology, and mRNA expression of IL-10, nuclear factor erythroid 2-related factor-2 (Nrf2), surfactant protein (SP)-B, vascular cell adhesion molecule-1, epithelial amiloride-sensitive Na-channel subunits α and γ, and sodium-potassium-adenosine-triphosphatase pump subunits α1 (α1-Na,K-ATPase) and ß1 (ß1-Na,K-ATPase). Additional ARDSp and ARDSexp animals (n = 6 per group) were anesthetized with sodium thiopental but not mechanically ventilated (NV) to serve as controls. Separately, to identify how sevoflurane and isoflurane act on type II epithelial cells, A549 human lung epithelial cells were stimulated with LPS (20 µg/mL) for 24 hours, and SP-B expression was quantified after further exposure to sevoflurane or isoflurane (1 minimal alveolar concentration ) for 60 minutes. RESULTS: In ARDSp, sevoflurane reduced IL-6 expression to a greater degree than isoflurane (P = .04). Static lung elastance (P = .0049) and alveolar collapse (P = .033) were lower in sevoflurane than isoflurane, whereas Nrf2 (P = .036), SP-B (P = .042), and ß1-Na,K-ATPase (P = .038) expressions were higher in sevoflurane. In ARDSexp, no significant differences were observed in lung mechanics, alveolar collapse, or molecular parameters between sevoflurane and isoflurane. In vitro, SP-B expression was higher in sevoflurane than isoflurane (P = .026). CONCLUSIONS: Compared with isoflurane, sevoflurane did not affect lung inflammation in ARDSexp, but it did reduce lung inflammation in ARDSp.


Asunto(s)
Isoflurano/uso terapéutico , Pulmón/efectos de los fármacos , Éteres Metílicos/uso terapéutico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Células A549 , Anestésicos , Animales , Escherichia coli , Femenino , Humanos , Inflamación , Interleucina-6/metabolismo , Lipopolisacáridos/administración & dosificación , Estrés Oxidativo , Distribución Aleatoria , Ratas , Ratas Wistar , Síndrome de Dificultad Respiratoria/etiología , Sevoflurano , Factores de Tiempo
18.
Crit Care Med ; 44(7): e553-62, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26963321

RESUMEN

OBJECTIVES: The biologic effects of variable ventilation may depend on the etiology of acute respiratory distress syndrome. We compared variable and conventional ventilation in experimental pulmonary and extrapulmonary acute respiratory distress syndrome. DESIGN: Prospective, randomized, controlled experimental study. SETTINGS: University research laboratory. SUBJECTS: Twenty-four Wistar rats. INTERVENTIONS: Acute respiratory distress syndrome was induced by Escherichia coli lipopolysaccharide administered intratracheally (pulmonary acute respiratory distress syndrome, n = 12) or intraperitoneally (extrapulmonary acute respiratory distress syndrome, n = 12). After 24 hours, animals were randomly assigned to receive conventional (volume-controlled ventilation, n = 6) or variable ventilation (n = 6). Nonventilated animals (n = 4 per etiology) were used for comparison of diffuse alveolar damage, E-cadherin, and molecular biology variables. Variable ventilation was applied on a breath-to-breath basis as a sequence of randomly generated tidal volume values (n = 600; mean tidal volume = 6 mL/kg), with a 30% coefficient of variation (normal distribution). After randomization, animals were ventilated for 1 hour and lungs were removed for histology and molecular biology analysis. MEASUREMENTS AND MAIN RESULTS: Variable ventilation improved oxygenation and reduced lung elastance compared with volume-controlled ventilation in both acute respiratory distress syndrome etiologies. In pulmonary acute respiratory distress syndrome, but not in extrapulmonary acute respiratory distress syndrome, variable ventilation 1) decreased total diffuse alveolar damage (median [interquartile range]: volume-controlled ventilation, 12 [11-17] vs variable ventilation, 9 [8-10]; p < 0.01), interleukin-6 expression (volume-controlled ventilation, 21.5 [18.3-23.3] vs variable ventilation, 5.6 [4.6-12.1]; p < 0.001), and angiopoietin-2/angiopoietin-1 ratio (volume-controlled ventilation, 2.0 [1.3-2.1] vs variable ventilation, 0.7 [0.6-1.4]; p < 0.05) and increased relative angiopoietin-1 expression (volume-controlled ventilation, 0.3 [0.2-0.5] vs variable ventilation, 0.8 [0.5-1.3]; p < 0.01). In extrapulmonary acute respiratory distress syndrome, only volume-controlled ventilation increased vascular cell adhesion molecule-1 messenger RNA expression (volume-controlled ventilation, 7.7 [5.7-18.6] vs nonventilated, 0.9 [0.7-1.3]; p < 0.05). E-cadherin expression in lung tissue was reduced in volume-controlled ventilation compared with nonventilated regardless of acute respiratory distress syndrome etiology. In pulmonary acute respiratory distress syndrome, E-cadherin expression was similar in volume-controlled ventilation and variable ventilation; in extrapulmonary acute respiratory distress syndrome, however, it was higher in variable ventilation than in volume-controlled ventilation. CONCLUSIONS: Variable ventilation improved lung function in both pulmonary acute respiratory distress syndrome and extrapulmonary acute respiratory distress syndrome. Variable ventilation led to more pronounced beneficial effects in biologic marker expressions in pulmonary acute respiratory distress syndrome compared with extrapulmonary acute respiratory distress syndrome but preserved E-cadherin in lung tissue only in extrapulmonary acute respiratory distress syndrome, thus suggesting lower damage to epithelial cells.


Asunto(s)
Pulmón/fisiopatología , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/terapia , Mecánica Respiratoria , Animales , Lipopolisacáridos , Pulmón/patología , Distribución Aleatoria , Ratas , Ratas Wistar , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/fisiopatología , Volumen de Ventilación Pulmonar
19.
Crit Care Med ; 44(9): e854-65, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27035236

RESUMEN

OBJECTIVE: Volutrauma and atelectrauma promote ventilator-induced lung injury, but their relative contribution to inflammation in ventilator-induced lung injury is not well established. The aim of this study was to determine the impact of volutrauma and atelectrauma on the distribution of lung inflammation in experimental acute respiratory distress syndrome. DESIGN: Laboratory investigation. SETTING: University-hospital research facility. SUBJECTS: Ten pigs (five per group; 34.7-49.9 kg) INTERVENTIONS: : Animals were anesthetized and intubated, and saline lung lavage was performed. Lungs were separated with a double-lumen tube. Following lung recruitment and decremental positive end-expiratory pressure trial, animals were randomly assigned to 4 hours of ventilation of the left (ventilator-induced lung injury) lung with tidal volume of approximately 3 mL/kg and 1) high positive end-expiratory pressure set above the level where dynamic compliance increased more than 5% during positive end-expiratory pressure trial (volutrauma); or 2) low positive end-expiratory pressure to achieve driving pressure comparable with volutrauma (atelectrauma). The right (control) lung was kept on continuous positive airway pressure of 20 cm H2O, and CO2 was partially removed extracorporeally. MEASUREMENTS AND MAIN RESULTS: Regional lung aeration, specific [F]fluorodeoxyglucose uptake rate, and perfusion were assessed using computed and positron emission tomography. Volutrauma yielded higher [F]fluorodeoxyglucose uptake rate in the ventilated lung compared with atelectrauma (median [interquartile range], 0.017 [0.014-0.025] vs 0.013 min [0.010-0.014 min]; p < 0.01), mainly in central lung regions. Volutrauma yielded higher [F]fluorodeoxyglucose uptake rate in ventilator-induced lung injury versus control lung (0.017 [0.014-0.025] vs 0.011 min [0.010-0.016 min]; p < 0.05), whereas atelectrauma did not. Volutrauma decreased blood fraction at similar perfusion and increased normally as well as hyperaerated lung compartments and tidal hyperaeration. Atelectrauma yielded higher poorly and nonaerated lung compartments, and tidal recruitment. Driving pressure increased in atelectrauma. CONCLUSIONS: In this model of acute respiratory distress syndrome, volutrauma promoted higher lung inflammation than atelectrauma at comparable low tidal volume and lower driving pressure, suggesting that static stress and strain are major determinants of ventilator-induced lung injury.


Asunto(s)
Neumonía/etiología , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/terapia , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología , Animales , Modelos Animales de Enfermedad , Rendimiento Pulmonar/fisiología , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/fisiopatología , Porcinos , Volumen de Ventilación Pulmonar/fisiología
20.
Respir Res ; 17(1): 158, 2016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27887604

RESUMEN

BACKGROUND: Variable ventilation has been shown to improve pulmonary function and reduce lung damage in different models of acute respiratory distress syndrome. Nevertheless, variable ventilation has not been tested during pneumonia. Theoretically, periodic increases in tidal volume (VT) and airway pressures might worsen the impairment of alveolar barrier function usually seen in pneumonia and could increase bacterial translocation into the bloodstream. We investigated the impact of variable ventilation on lung function and histologic damage, as well as markers of lung inflammation, epithelial and endothelial cell damage, and alveolar stress, and bacterial translocation in experimental pneumonia. METHODS: Thirty-two Wistar rats were randomly assigned to receive intratracheal of Pseudomonas aeruginosa (PA) or saline (SAL) (n = 16/group). After 24-h, animals were anesthetized and ventilated for 2 h with either conventional volume-controlled (VCV) or variable volume-controlled ventilation (VV), with mean VT = 6 mL/kg, PEEP = 5cmH2O, and FiO2 = 0.4. During VV, tidal volume varied randomly with a coefficient of variation of 30% and a Gaussian distribution. Additional animals assigned to receive either PA or SAL (n = 8/group) were not ventilated (NV) to serve as controls. RESULTS: In both SAL and PA, VV improved oxygenation and lung elastance compared to VCV. In SAL, VV decreased interleukin (IL)-6 expression compared to VCV (median [interquartile range]: 1.3 [0.3-2.3] vs. 5.3 [3.6-7.0]; p = 0.02) and increased surfactant protein-D expression compared to NV (2.5 [1.9-3.5] vs. 1.2 [0.8-1.2]; p = 0.0005). In PA, compared to VCV, VV reduced perivascular edema (2.5 [2.0-3.75] vs. 6.0 [4.5-6.0]; p < 0.0001), septum neutrophils (2.0 [1.0-4.0] vs. 5.0 [3.3-6.0]; p = 0.0008), necrotizing vasculitis (3.0 [2.0-5.5] vs. 6.0 [6.0-6.0]; p = 0.0003), and ultrastructural lung damage scores (16 [14-17] vs. 24 [14-27], p < 0.0001). Blood colony-forming-unit (CFU) counts were comparable (7 [0-28] vs. 6 [0-26], p = 0.77). Compared to NV, VCV, but not VV, increased expression amphiregulin, IL-6, and cytokine-induced neutrophil chemoattractant (CINC)-1 (2.1 [1.6-2.5] vs. 0.9 [0.7-1.2], p = 0.025; 12.3 [7.9-22.0] vs. 0.8 [0.6-1.9], p = 0.006; and 4.4 [2.9-5.6] vs. 0.9 [0.8-1.4], p = 0.003, respectively). Angiopoietin-2 expression was lower in VV compared to NV animals (0.5 [0.3-0.8] vs. 1.3 [1.0-1.5], p = 0.01). CONCLUSION: In this rat model of pneumonia, VV improved pulmonary function and reduced lung damage as compared to VCV, without increasing bacterial translocation.


Asunto(s)
Traslocación Bacteriana , Pulmón/fisiopatología , Neumonía Bacteriana/terapia , Infecciones por Pseudomonas/terapia , Respiración Artificial/métodos , Algoritmos , Animales , Células Endoteliales/patología , Células Epiteliales/patología , Inflamación/patología , Pulmón/ultraestructura , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/fisiopatología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/fisiopatología , Alveolos Pulmonares/patología , Ratas , Ratas Wistar , Pruebas de Función Respiratoria , Volumen de Ventilación Pulmonar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA