Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 8(12): e1003142, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284303

RESUMEN

The critical stem cell transcription factor FoxD3 is expressed by the premigratory and migrating neural crest, an embryonic stem cell population that forms diverse derivatives. Despite its important role in development and stem cell biology, little is known about what mediates FoxD3 activity in these cells. We have uncovered two FoxD3 enhancers, NC1 and NC2, that drive reporter expression in spatially and temporally distinct manners. Whereas NC1 activity recapitulates initial FoxD3 expression in the cranial neural crest, NC2 activity recapitulates initial FoxD3 expression at vagal/trunk levels while appearing only later in migrating cranial crest. Detailed mutational analysis, in vivo chromatin immunoprecipitation, and morpholino knock-downs reveal that transcription factors Pax7 and Msx1/2 cooperate with the neural crest specifier gene, Ets1, to bind to the cranial NC1 regulatory element. However, at vagal/trunk levels, they function together with the neural plate border gene, Zic1, which directly binds to the NC2 enhancer. These results reveal dynamic and differential regulation of FoxD3 in distinct neural crest subpopulations, suggesting that heterogeneity is encrypted at the regulatory level. Isolation of neural crest enhancers not only allows establishment of direct regulatory connections underlying neural crest formation, but also provides valuable tools for tissue specific manipulation and investigation of neural crest cell identity in amniotes.


Asunto(s)
Diferenciación Celular , Elementos de Facilitación Genéticos , Factores de Transcripción Forkhead , Cresta Neural , Proteínas de Pez Cebra , Pez Cebra , Animales , Movimiento Celular , Análisis Mutacional de ADN , Células Madre Embrionarias , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genoma , Ratones , Cresta Neural/citología , Cresta Neural/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Development ; 137(3): 507-18, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20081195

RESUMEN

Comparative studies of the tetrapod raldh2 (aldh1a2) gene, which encodes a retinoic acid (RA) synthesis enzyme, have led to the identification of a dorsal spinal cord enhancer. Enhancer activity is directed dorsally to the roof plate and dorsal-most (dI1) interneurons through predicted Tcf- and Cdx-homeodomain binding sites and is repressed ventrally via predicted Tgif homeobox and ventral Lim-homeodomain binding sites. Raldh2 and Math1/Cath1 expression in mouse and chicken highlights a novel, transient, endogenous Raldh2 expression domain in dI1 interneurons, which give rise to ascending circuits and intraspinal commissural interneurons, suggesting roles for RA in the ontogeny of spinocerebellar and intraspinal proprioceptive circuits. Consistent with expression of raldh2 in the dorsal interneurons of tetrapods, we also found that raldh2 is expressed in dorsal interneurons throughout the agnathan spinal cord, suggesting ancestral roles for RA signaling in the ontogenesis of intraspinal proprioception.


Asunto(s)
Aldehído Oxidorreductasas/fisiología , Médula Espinal/fisiología , Animales , Sitios de Unión , Pollos , Secuencia Conservada , Evolución Molecular , Factor Nuclear 1-alfa del Hepatocito , Proteínas de Homeodominio , Interneuronas , Proteínas con Homeodominio LIM , Ratones , Ratones Transgénicos , Proteínas Represoras , Factor 1 de Transcripción de Linfocitos T , Factores de Transcripción , Tretinoina/fisiología
3.
J Exp Zool B Mol Dev Evol ; 310(1): 54-72, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17109394

RESUMEN

Signaling by retinoic acid (RA) is an important pathway in the development and homeostasis of vertebrate and invertebrate chordates, with a critical role in mesoderm patterning. Classical studies on the distribution of nuclear receptors of animals suggested that the family of RA receptors (RARs/NR1B) was restricted to chordates, while the family of RA X receptors (RXR/NR2B) was distributed from cnidarians to chordates. However, the accumulation of data from genome projects and studies in non-model species is questioning this traditional view. Here we discuss the evidence for non-chordate RA signaling systems in the light of recent advances in our understanding of carotene (pro-Vitamin A) metabolism and of the identification of potential RARs and members of the NR1 family in echinoderms and lophotrochozoan trematodes, respectively. We conclude, as have others before (Bertrand et al., 2004. Mol Biol Evol 21(10):1923-1937), that signaling by RA is more likely an ancestral feature of bilaterians than a chordate innovation.


Asunto(s)
Cordados/metabolismo , Embrión no Mamífero/metabolismo , Invertebrados/metabolismo , Transducción de Señal , Tretinoina/metabolismo , Secuencia de Aminoácidos , Animales , Cordados/embriología , Cordados/genética , Embrión no Mamífero/embriología , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Invertebrados/embriología , Invertebrados/genética , Datos de Secuencia Molecular
4.
Dev Biol ; 277(1): 1-15, 2005 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15572135

RESUMEN

Identification of cardiac mechanisms of retinoic acid (RA) signaling, description of homologous genetic circuits in Ciona intestinalis and consolidation of views on the secondary heart field have fundamental, but still unrecognized implications for vertebrate heart evolution. Utilizing concepts from evolution, development, zoology, and circulatory physiology, we evaluate the strengths of animal models and scenarios for the origin of vertebrate hearts. Analyzing chordates, lower and higher vertebrates, we propose a paradigm picturing vertebrate hearts as advanced circulatory pumps formed by segments, chambered or not, devoted to inflow or outflow. We suggest that chambers arose not as single units, but as components of a peristaltic pump divided by patterning events, contrasting with scenarios assuming that chambers developed one at a time. Recognizing RA signaling as a potential mechanism patterning cardiac segments, we propose to use it as a tool to scrutinize the phylogenetic origins of cardiac chambers within chordates. Finally, we integrate recent ideas on cardiac development such as the ballooning and secondary/anterior heart field paradigms, showing how inflow/outflow patterning may interact with developmental mechanisms suggested by these models.


Asunto(s)
Evolución Biológica , Corazón/anatomía & histología , Corazón/embriología , Animales , Humanos , Filogenia , Transducción de Señal , Tretinoina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA