RESUMEN
During the synthesis of tofisopam drug substance, an interesting diastereospecific lithium variant of Oppenauer oxidation was observed and investigated by density functional theory (DFT) calculations. The computations revealed energetic differences caused by steric differences between the diastereomers that might provide an explanation for the experimentally formed products. In addition, the trend in the measured NMR shifts was also in line with the computed values, which allowed the assignment of the absolute configuration of the diastereomers.
RESUMEN
Previously, we have studied the trifluoroacetic acid (TFA)-catalyzed rearrangements of unsubstituted and alkoxy-substituted ortho-(pivaloylaminomethyl)benzaldehydes and revealed the formation of rearranged, regioisomeric aldehydes along with dimer-like products ("TFA dimers"). In the present study, related reactions of ortho-(pivaloylaminomethyl)benzaldehydes are described with the difference that boron trifluoride diethyl etherate (BF3·OEt2) is used as the catalyst. Although in these reactions the formation of the same "TFA dimers" can be observed after a couple of hours reaction time, during further stirring these are transformed into a new dimer-like keto compound ("BF3 dimer") that gradually becomes the main product. Apart from this, an oxoindene-type by-product is also formed. The new products are characterized by detailed NMR studies and two of them also by single-crystal X-ray diffraction. DFT calculations support the mechanism proposed for the transformations and explain the differences observed in the product distribution.
RESUMEN
New approaches have been tested for the synthesis of lumateperone intermediates. As a result of these efforts, a novel synthesis of the late-stage tetracyclic key intermediate of lumateperone starting from the commercially available quinoxaline is described. The tetracyclic skeleton was constructed by the reaction of 1-trifluoroacetyl-4-aminoquinoxaline with ethyl 4-oxopiperidine-1-carboxylate in a Fischer indole synthesis. The inexpensive starting material, the efficient synthetic steps, and the avoidance of the borane-based reduction step provide a reasonable potential for scalability.
RESUMEN
The base-induced (t-BuOK) rearrangement reactions of 3,4-dihydro-2H-1,2,3-benzothiadiazine 1,1-dioxides result in a ring opening along the N-N bond, followed by ring closure with the formation of new C-N bonds. The position of the newly formed C-N bond can selectively be tuned by the amount of the base, providing access to new, pharmacologically interesting ring systems with high yield. While with 2 equiv of t-BuOK 1,2-benzisothiazoles can be obtained in a diaza-[1,2]-Wittig reaction, with 6 equiv of the base 1,2-benzothiazine 1,1-dioxides can be prepared in most cases as the main product, in a diaza-[1,3]-Wittig reaction. DFT calculations and detailed NMR studies clarified the mechanism, with a mono- or dianionic key intermediate, depending on the amount of the reactant base. Also, the role of an enamide intermediate formed during the workup of the highly basic (6 equiv of base) reaction was clarified. The substrate scope of the reaction was also explored in detail.
RESUMEN
Treatment of alkoxy-substituted o-(pivaloylaminomethyl)benzaldehydes under acidic conditions resulted in the formation of the regioisomeric aldehydes and/or dimer-like products. Detailed NMR studies and single-crystal X-ray measurements supported the structure elucidation of the compounds. DFT calculations were also carried out to clarify the reaction mechanism, and to explain the observed product distributions and structural variances in the dimer-like products. Studies on the transformation of unsubstituted o-(pivaloylaminomethyl)benzaldehyde under similar conditions were presented as well.
RESUMEN
A simple procedure for the synthesis of 8-fluoro-3,4-dihydroisoquinoline is described below, based on a directed ortho-lithiation reaction. This key intermediate was then applied in various transformations. Fluorineâ»amine exchange afforded the corresponding 8-amino-3,4-dihydroisoquinolines, suitable starting compounds for the synthesis of 1-substituted 8-amino-tetrahydroisoquinolines. On the other hand, reduction and alkylation reactions of 8-fluoro-3,4-dihydroisoquinoline led to novel 1,2,3,4-tetrahydroisoquinoline derivatives that can be used as building blocks in the synthesis of potential central nervous system drug candidates.
Asunto(s)
Isoquinolinas/síntesis química , Tetrahidroisoquinolinas/química , Alquilación , Ciclización , Estructura Molecular , Oxidación-ReducciónRESUMEN
When refluxing with sodium hydrogen carbonate in acetonitrile, 7-chloro-5-(4-fluorophenyl)-1,3-dihydro-2,3,4-benzothiadiazepine 2,2-dioxide afforded, after loss of dinitrogen and subsequent ring contraction, the corresponding sulfone in 83% yield. Similar treatment of the related thiadiazolo-fused tricycles, i.e. 9-aryl-5H,7H-[1,2,5]thiadiazolo[3,4-h][2,3,4]benzothiadiazepine 6,6-dioxides, resulted in a substantially different product mixture: formation of sultines and benzocyclobutenes was observed, while only small amounts of the sulfones were formed, if any. Density functional theory calculations support the mechanism proposed for the transformations involving a zwitterionic intermediate formed by the tautomerization of the thiadiazepine ring followed by dinitrogen extrusion. When starting from 7-chloro-substituted 2,3,4-benzothiadiazepine 2,2-dioxide, the formation of sulfone via o-quinodimethane is the preferred pathway from the zwitterion. However, in the case of thiadiazolobenzothiadiazepine 6,6-dioxides it has been found that the ring closure of the zwitterion leading to the formation of sultines was kinetically preferred over the loss of sulfur dioxide leading to o-quinodimethane, which is the key intermediate to benzocyclobutene-type products. The calculations explain the differences observed between the product distributions of the chloro-substituted and the thiadiazolo-fused derivatives.
RESUMEN
The chemistry of the 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one (1,3-diazaoxindole) compound family, possessing a drug-like scaffold, is unexplored. In this study, the alkylation reactions of N(7)-unsubstituted 5-isopropyl-1,3-diazaoxindoles bearing various substituents at the C(2) position have been investigated. The starting compounds were synthesized from the C(5)-unsubstituted parent compounds by condensation with acetone and subsequent catalytic reduction of the 5-isopropylidene moiety. Alkylation of the thus obtained 5-isopropyl derivatives with methyl iodide or benzyl bromide in the presence of a large excess of sodium hydroxide led to 5,7-disubstituted derivatives. Use of butyllithium as the base rendered alkylation in the C(5) position possible with reasonable selectivity, without affecting the N(7) atom. During the study on the alkylation reactions, some interesting by-products were also isolated and characterized.
Asunto(s)
Compuestos Aza/síntesis química , Técnicas de Química Sintética , Indoles/síntesis química , Acetona/química , Alquenos/química , Alquilación , Compuestos de Bencilo/química , Catálisis , Hidrocarburos Yodados/química , Compuestos Organometálicos/química , Hidróxido de Sodio/químicaRESUMEN
The paper provides a comprehensive review of the base-catalysed C3-alkylation of N-unprotected-3-monosubstituted oxindoles. Based on a few, non-systematic studies described in the literature using butyllithium as the deprotonating agent, an optimized method has now been elaborated, via the corresponding lithium salt, for the selective C3-alkylation of this family of compounds. The optimal excess of butyllithium and alkylating agent, and the role of the halogen atom in the latter (alkyl bromides vs. iodides) were also studied. The alkylation protocol has also been extended to some derivatives substituted at the aromatic ring. Finally, various substituents were introduced into the aromatic ring of the N-unprotected 3,3-dialkyloxindoles obtained by this optimized method.
Asunto(s)
Halógenos/química , Indoles/química , Compuestos Organometálicos/química , Protones , Alquilación , Catálisis , Estructura Molecular , Oxidación-Reducción , Oxindoles , EstereoisomerismoRESUMEN
Orthoscuticellines A and B are newly isolated natural ß-carboline alkaloids from the moss animal Orthoscuticella ventricosa. Herein, we report the first targeted total synthesis of orthoscuticelline B and an analogous synthetic method for the preparation of dihydro derivate of orthoscuticelline A. The new synthetic approach is based on commercially available and inexpensive reagents leading to a practical synthesis of the target molecules. The reaction sequence consisting of a T3P®-catalyzed amide formation followed by a Bischler-Napieralski cyclisation and a DDQ-assisted dehydrogenation step ensures a practical access to orthoscuticelline B in three steps with 58% overall yield.
RESUMEN
The routine prediction of the reactivity of a complex, multifunctional molecule is a challenging and time-consuming procedure. In the last step of the synthesis of the well-known drug substance tenidap, a nonexpected difference was observed between the reactivities of two closely related carbamate moieties, the N-ethoxycarbonyl and the N-phenoxycarbonyl group. A detailed kinetic study, necessitating a significant computational effort, is described in the present paper for this reaction step. On the other hand, the systems chemistry concept, by analyzing the details of the electronic structure and the connections between functional groups in a fast and simple way, is also able to answer this question using various "-icity" parameters (aromaticity, carbonylicity, olefinicity). The complete systems chemistry approach involves all these conjugativicity parameters, while its further simplified version is based on only one key parameter, which is carbonylicity in the present case. The above methods were compared in terms of their predictive power. The results show that the systems chemistry concept, even its one-parameter version, is applicable for the characterization of this challenging reactivity issue.
Asunto(s)
Amoníaco/química , Indoles/síntesis química , Indoles/química , Cinética , Estructura Molecular , Oxindoles , TermodinámicaRESUMEN
Incubation of oxindole derivatives containing an arylpiperazine pharmacophore in rat liver microsomes in vitro formed several metabolites hydroxylated at various positions of the aromatic rings of the oxindole carbocycle or the arylpiperazine moiety. In order to substitute the sites of metabolic attack on these positional isomers, the exact structure of the molecules had to be identified. As polarities of the compounds depend on the site of hydroxylation, we measured retention times of the metabolites using reversed-phase HPLC. It was noted that the relative retention times (RRT, the ratio of the retention time of the metabolite and the parent compound) fell into distinct narrow ranges for metabolites identified by MS spectra as positional isomers. These RRT ranges correlated with the positions of hydroxylation. The hypothesis was validated by synthesis of hydroxy compounds of known structure and by determination of their RRT values. Change in the chromatographic parameters such as column type, eluent, gradient time and temperature did not impede the identification of the sites of hydroxylation as the RRT pattern remained similar to the original one. The new empirical method proposed in our study can be used for tentative identification of hydroxy metabolites and orient the direction of efforts to synthesize metabolically stable compounds.
Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Oxindoles/química , Hidroxilación , IsomerismoRESUMEN
A series of potent 5-hydroxytryptamine 7 (5-HT 7) ligands has been synthesized that contain a 1,3-dihydro-2 H-indol-2-one (oxindole) skeleton. The binding of these compounds to the 5-HT 7 and 5-HT 1A receptors was measured. Despite the structural similarity of these two serotonin receptor subtypes, several derivatives exhibited a high selectivity to the 5-HT 7 receptor. According to the structure-activity relationship observations, compounds unsubstituted at the oxindole nitrogen atom and containing a tetramethylene spacer between the oxindole skeleton and the basic nitrogen atom are the most potent ligands. Concerning the basic group, besides the moieties of the 4-phenylpiperazine type, halophenyl-1,2,3,6-tetrahydropyridines also proved to be 5-HT 7 receptor-ligands. Because of halogen substitution on the aromatic rings, good metabolic stability could be achieved. A representative of the family, 3-{4-[4-(4-chlorophenyl)-piperazin-1-yl]-butyl}-3-ethyl-6-fluoro-1,3-dihydro-2 H-indol-2-one ( 9e') exhibited selective 5-HT 7 antagonist activity ( K i = 0.79 nM). The in vivo pharmacological potencies of these 5-HT 7 receptor-ligands were estimated by the conflict drinking (Vogel) and the light-dark anxiolytic tests.
Asunto(s)
Indoles/farmacología , Receptores de Serotonina/efectos de los fármacos , Antagonistas de la Serotonina/farmacología , Animales , Células CHO , Cricetinae , Cricetulus , Indoles/química , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratas , Ratas Wistar , Antagonistas de la Serotonina/química , Espectrofotometría InfrarrojaRESUMEN
AMPA receptors are fast ligand-gated members of glutamate receptors in neuronal and many types of non-neuronal cells. The heterotetramer complexes are assembled from four subunits (GluR1-4) in region-, development- and function-selective patterns. Each subunit contains three extracellular domains (a large amino terminal domain, an agonist-binding domain and a transducer domain), and three transmembrane segments with a loop (pore forming domain), as well as the intracellular carboxy terminal tail (traffic and conductance regulatory domain). The binding of the agonist (excitatory amino acids and their derivatives) initiates conformational realignments, which transmit to the transducer domain and membrane spanning segments to gate the channel permeable to Na+, K+ and more or less to Ca2+. Several 2,3-benzodiazepines act as non-competitive antagonists of the AMPA receptor (termed also negative allosteric modulators), which are thought to bind to the transducer domains and inhibit channel gating. Analysing their effects in vitro, it has been possible to recognize a structure-activity relationship, and to describe the critical parts of the molecules involved in their action at AMPA receptors. Blockade of AMPA receptors can protect the brain from apoptotic and necrotic cell death by preventing neuronal excitotoxicity during pathophysiological activation of glutamatergic neurons. Animal experiments provided evidence for the potential usefulness of non-competitive AMPA antagonists in the treatment of human ischemic and neurodegenerative disorders including stroke, multiple sclerosis, Parkinson's disease, periventricular leukomalacia and motoneuron disease. 2,3-benzodiazepine AMPA antagonists can protect against seizures, decrease levodopa-induced dyskinesia in animal models of Parkinson's disease demonstrating their utility for the treatment of a variety of CNS disorders.
Asunto(s)
Benzodiazepinas/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Fármacos Neuroprotectores/farmacología , Receptores AMPA/antagonistas & inhibidores , Animales , Humanos , Metilación , Receptores AMPA/genética , Relación Estructura-ActividadRESUMEN
Novel 2,3-benzodiazepine and related isoquinoline derivatives, substituted at position 1 with a 2-benzothiophenyl moiety, were synthesized to produce compounds that potently inhibited the action of GABA on heterologously expressed GABAA receptors containing the alpha 5 subunit (GABAA α5), with no apparent affinity for the benzodiazepine site. Substitutions of the benzothiophene moiety at position 4 led to compounds with drug-like properties that were putative inhibitors of extra-synaptic GABAA α5 receptors and had substantial blood-brain barrier permeability. Initial characterization in vivo showed that 8-methyl-5-[4-(trifluoromethyl)-1-benzothiophen-2-yl]-1,9-dihydro-2H-[1,3]oxazolo[4,5-h][2,3]benzodiazepin-2-one was devoid of sedative, pro-convulsive or motor side-effects, and enhanced the performance of rats in the object recognition test. In summary, we have discovered a first-in-class GABA-site inhibitor of extra-synaptic GABAA α5 receptors that has promising drug-like properties and warrants further development.
Asunto(s)
Anticonvulsivantes/farmacología , Benzodiazepinas/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Nootrópicos/farmacología , Receptores de GABA-A/efectos de los fármacos , Animales , Anticonvulsivantes/síntesis química , Anticonvulsivantes/metabolismo , Anticonvulsivantes/toxicidad , Conducta Animal/efectos de los fármacos , Benzodiazepinas/síntesis química , Benzodiazepinas/metabolismo , Benzodiazepinas/toxicidad , Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Antagonistas de Receptores de GABA-A/síntesis química , Antagonistas de Receptores de GABA-A/metabolismo , Antagonistas de Receptores de GABA-A/toxicidad , Células HEK293 , Humanos , Masculino , Ratones , Estructura Molecular , Actividad Motora/efectos de los fármacos , Nootrópicos/síntesis química , Nootrópicos/metabolismo , Nootrópicos/toxicidad , Pentilenotetrazol , Ratas Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Reconocimiento en Psicología/efectos de los fármacos , Convulsiones/inducido químicamente , Convulsiones/prevención & control , Relación Estructura-Actividad , Xenopus laevisRESUMEN
A series of (arylpiperazinylbutyl)oxindoles as highly potent 5-HT(7) receptor antagonists has been studied for their selectivity toward the 5-HT(1A) receptor and α(1)-adrenoceptor. Several derivatives exhibited high 5-HT(7)/5-HT(1A) selectivity, and the key structural factors for reducing undesired α(1)-adrenergic receptor binding have also been identified. Rapid metabolism, a common problem within this family of compounds, could be circumvented with appropriate substitution patterns on the oxindole carbocycle. Contrary to expectations, none of the compounds produced an antidepressant-like action in the forced swimming test in mice despite sufficiently high brain concentrations. On the other hand, certain analogues showed significant anxiolytic activity in two different animal models: the Vogel conflict drinking test in rats and the light-dark test in mice.
Asunto(s)
Ansiolíticos/síntesis química , Antidepresivos/síntesis química , Indoles/síntesis química , Piperazinas/síntesis química , Receptores de Serotonina/metabolismo , Antagonistas de la Serotonina/síntesis química , Animales , Ansiolíticos/química , Ansiolíticos/farmacología , Antidepresivos/química , Antidepresivos/farmacología , Sitios de Unión , Encéfalo/metabolismo , Células CHO , Cricetinae , Cricetulus , Técnicas In Vitro , Indoles/química , Indoles/farmacología , Ligandos , Masculino , Ratones , Microsomas Hepáticos/metabolismo , Piperazinas/química , Piperazinas/farmacología , Ensayo de Unión Radioligante , Ratas , Receptor de Serotonina 5-HT1A/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Antagonistas de la Serotonina/química , Antagonistas de la Serotonina/farmacología , Relación Estructura-Actividad , Distribución TisularRESUMEN
Although the 5-HT(5) receptor subfamily was discovered more than 15 years ago, it is unambiguously the least known 5-HT receptor subtype. The G(i)/G(0)-mediated signal transduction and its intensive presence in raphe and other brainstem and pons nuclei suggest mechanisms similar to those of 5-HT(1) receptors, the ligands of which are already applied in the treatment of e.g. anxiety and migraine. In addition, a unique coupling and inhibition of adenosine diphosphate-ribosyl cyclase have also been described. High concentrations of 5-HT(5) receptor in other key regions including, e.g. locus coeruleus, nucleus of the solitary tract, arcuate and suprachiasmatic nuclei of the hypothalamus indicate a wide range of physiological effects, thus its ligands are potential drug candidates in various areas, e.g. anxiety, sleep, incontinence, food intake, learning and memory, pain or chemoreception pathways. These findings have motivated several institutes and pharmaceutical companies to participate in the research of this field. Despite extensive research, no selective agonist and only two selective antagonists have been identified until now. Beyond these compounds, the present review provides a complete overview on all other published 5-HT(5A) receptor ligands as well as on the structure, function, distribution, genetics and possible therapeutic applications of this receptor.
Asunto(s)
Receptores de Serotonina/clasificación , Receptores de Serotonina/metabolismo , Antagonistas de la Serotonina/farmacología , Animales , Química Farmacéutica , Humanos , Ligandos , Receptores de Serotonina/química , Receptores de Serotonina/genética , Antagonistas de la Serotonina/química , Antagonistas de la Serotonina/uso terapéutico , Transducción de Señal , Relación Estructura-ActividadRESUMEN
In an effort to find potential anxiolytic and/or antipsychotic agents with selective 5-HT(2C) affinity a series of new pyrimidine derivatives was prepared and the binding affinities for 5-HT(2A) and 5-HT(2C) receptors were determined.