Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 13656, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31541123

RESUMEN

Spiders are commonly found in terrestrial environments and many rely heavily on their silks for fitness related tasks such as reproduction and dispersal. Although rare, a few species occupy aquatic or semi-aquatic habitats and for them, silk-related specializations are also essential to survive in aquatic environments. Most spider silks studied to date are from cob-web and orb-web weaving species, leaving the silks from many other terrestrial spiders as well as water-associated spiders largely undescribed. Here, we characterize silks from three Dictynoidea species: the aquatic spiders Argyroneta aquatica and Desis marina as well as the terrestrial Badumna longinqua. From silk gland RNA-Seq libraries, we report a total of 47 different homologs of the spidroin (spider fibroin) gene family. Some of these 47 spidroins correspond to known spidroin types (aciniform, ampullate, cribellar, pyriform, and tubuliform), while other spidroins represent novel branches of the spidroin gene family. We also report a hydrophobic amino acid motif (GV) that, to date, is found only in the spidroins of aquatic and semi-aquatic spiders. Comparison of spider silk sequences to the silks from other water-associated arthropods, shows that there is a diversity of strategies to function in aquatic environments.


Asunto(s)
Fibroínas/genética , Perfilación de la Expresión Génica/veterinaria , Seda/genética , Arañas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Organismos Acuáticos/genética , Evolución Molecular , Femenino , Fibroínas/química , Fibroínas/metabolismo , Regulación de la Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Familia de Multigenes , Filogenia , Análisis de Secuencia de ARN , Seda/metabolismo , Arañas/clasificación , Arañas/metabolismo
2.
Ecol Evol ; 7(21): 8936-8949, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29152189

RESUMEN

The worldwide plant economic spectrum hypothesis predicts that leaf, stem, and root traits are correlated across vascular plant species because carbon gain depends on leaves being adequately supplied with water and nutrients, and because construction of each organ involves a trade-off between performance and persistence. Despite its logical and intuitive appeal, this hypothesis has received mixed empirical support. If traits within species diverge in their responses to an environmental gradient, then interspecific trait correlations could be weakened when measured in natural ecosystems. To test this prediction, we measured relative growth rates (RGR) and seven functional traits that have been shown to be related to fluxes of water, nutrients, and carbon across 56 functionally diverse tree species on (1) juveniles in a controlled environment, (2) juveniles in forest understories, and (3) mature trees in forests. Leaf, stem, and fine root traits of juveniles grown in a controlled environment were closely correlated with each other, and with RGR. Remarkably, the seven leaf, stem, and fine root tissue traits spanned a single dimension of variation when measured in the controlled environment. Forest-grown juveniles expressed lower leaf mass per area, but higher wood and fine root tissue density, than greenhouse-grown juveniles. Traits and growth rates were decoupled in forest-grown juveniles and mature trees. Our results indicate that constraints exist on the covariation, not just the variation, among vegetative plant organs; however, divergent responses of traits within species to environmental gradients can mask interspecific trait correlations in natural environments. Correlations among organs and relationships between traits and RGR were strong when plants were compared in a standardized environment. Our results may reconcile the discrepancies seen among studies, by showing that if traits and growth rates of species are compared across varied environments, then the interorgan trait correlations observed in controlled conditions can weaken or disappear.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA