Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(14): 6836-6841, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30890638

RESUMEN

Lysyl oxidase (LOX) and LOX-like (LOXL) proteins are copper-dependent metalloenzymes with well-documented roles in tumor metastasis and fibrotic diseases. The mechanism by which copper is delivered to these enzymes is poorly understood. In this study, we demonstrate that the copper transporter ATP7A is necessary for the activity of LOX and LOXL enzymes. Silencing of ATP7A inhibited LOX activity in the 4T1 mammary carcinoma cell line, resulting in a loss of LOX-dependent mechanisms of metastasis, including the phosphorylation of focal adhesion kinase and myeloid cell recruitment to the lungs, in an orthotopic mouse model of breast cancer. ATP7A silencing was also found to attenuate LOX activity and metastasis of Lewis lung carcinoma cells in mice. Meta-analysis of breast cancer patients found that high ATP7A expression was significantly correlated with reduced survival. Taken together, these results identify ATP7A as a therapeutic target for blocking LOX- and LOXL-dependent malignancies.


Asunto(s)
Carcinoma Pulmonar de Lewis/enzimología , ATPasas Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Neoplasias Mamarias Animales/enzimología , Proteínas de Neoplasias/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patología , ATPasas Transportadoras de Cobre/genética , Femenino , Humanos , Transporte Iónico , Masculino , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Metaanálisis como Asunto , Ratones , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Proteína-Lisina 6-Oxidasa/genética
2.
AIDS Res Ther ; 17(1): 67, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33225968

RESUMEN

BACKGROUND: Diagnosis of people living with HIV (PLHIV) is the first step toward achieving the new Fast Track Strategy to end AIDS by 2030: 95-95-95. However, reaching PLHIV is especially difficult in resource-limited settings such as the Democratic Republic of Congo (DRC), where reliable prevalence data is lacking. This study evaluated the prevalence of HIV in patients in the urban Kinshasa area. METHODS: Individuals seeking healthcare were tested for HIV between February 2017 and July 2018 at existing Kinshasa urban clinics. The study was conducted in two phases. Case finding was optimized in a pilot study phase using a modified cell phone-based Open\Data Kit (ODK) collection system. HIV prevalence was then determined from data obtained between March-July of 2018 from 8320 individuals over the age of 18 years receiving care at one of 47 clinics in Kinshasa. RESULTS: The prevalence of HIV in our study was 11.0% (95% CI 10.3-11.6%) overall and 8.14% in the subset of N = 1240 participants who were healthy mothers seeking prenatal care. These results are in sharp contrast to President's Emergency Plan for AIDS Relief (PEPFAR) estimates of 2.86%, but are consistent with data from surrounding countries. CONCLUSION: While this data is sub-national and reflects an urban healthcare setting, given the large population of Kinshasa and rapidly changing age demographics, the results suggest that HIV prevalence in the DRC is substantially higher than previously reported.


Asunto(s)
Infecciones por VIH , Salud Urbana , Adulto , República Democrática del Congo/epidemiología , Femenino , Infecciones por VIH/diagnóstico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Humanos , Persona de Mediana Edad , Proyectos Piloto , Embarazo , Atención Prenatal
3.
Plant Cell Physiol ; 60(10): 2152-2166, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31150089

RESUMEN

12-hydroxy-jasmonoyl-isoleucine (12OH-JA-Ile) is a metabolite in the catabolic pathway of the plant hormone jasmonate, and is synthesized by the cytochrome P450 subclade 94 enzymes. Contrary to the well-established function of jasmonoyl-isoleucine (JA-Ile) as the endogenous bioactive form of jasmonate, the function of 12OH-JA-Ile is unclear. Here, the potential role of 12OH-JA-Ile in jasmonate signaling and wound response was investigated. Exogenous application of 12OH-JA-Ile mimicked several JA-Ile effects including marker gene expression, anthocyanin accumulation and trichome induction in Arabidopsis thaliana. Genome-wide transcriptomics and untargeted metabolite analyses showed large overlaps between those affected by 12OH-JA-Ile and JA-Ile. 12OH-JA-Ile signaling was blocked by mutation in CORONATINE INSENSITIVE 1. Increased anthocyanin accumulation by 12OH-JA-Ile was additionally observed in tomato and sorghum, and was disrupted by the COI1 defect in tomato jai1 mutant. In silico ligand docking predicted that 12OH-JA-Ile can maintain many of the key interactions with COI1-JAZ1 residues identified earlier by crystal structure studies using JA-Ile as ligand. Genetic alternation of jasmonate metabolic pathways in Arabidopsis to deplete both JA-Ile and 12OH-JA-Ile displayed enhanced jasmonate deficient wound phenotypes and was more susceptible to insect herbivory than that depleted in only JA-Ile. Conversely, mutants overaccumulating 12OH-JA-Ile showed intensified wound responses compared with wild type with similar JA-Ile content. These data are indicative of 12OH-JA-Ile functioning as an active jasmonate signal and contributing to wound and defense response in higher plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Isoleucina/metabolismo , Redes y Vías Metabólicas , Fenotipo , Transducción de Señal
4.
Biochemistry ; 56(1): 33-46, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-27936595

RESUMEN

Reverse transcriptases (RTs) are typically assayed in vitro with 5-10 mM Mg2+, whereas the free Mg2+ concentration in cells is much lower. Artificially high Mg2+ concentrations used in vitro can misrepresent different properties of human immunodeficiency virus (HIV) RT, including fidelity, catalysis, pausing, and RNase H activity. Here, we analyzed nucleoside (NRTIs) and non-nucleoside RT inhibitors (NNRTIs) in primer extension assays at different concentrations of free Mg2+. At low concentrations of Mg2+, NRTIs and dideoxynucleotides (AZTTP, ddCTP, ddGTP, and 3TCTP) inhibited HIV-1 and HIV-2 RT synthesis less efficiently than they did with large amounts of Mg2+, whereas inhibition by the "translocation-defective RT inhibitor" EFdA (4'-ethynyl-2-fluoro-2'-deoxyadenosine) was unaffected by Mg2+ concentrations. Steady-state kinetic analyses revealed that the reduced level of inhibition at low Mg2+ concentrations resulted from a 3-9-fold (depending on the particular nucleotide and inhibitor) less efficient incorporation (based on kcat/Km) of these NRTIs under this condition compared to incorporation of natural dNTPs. In contrast, EFdATP was incorporated with an efficiency similar to that of its analogue dATP at low Mg2+ concentrations. Unlike NRTIs, NNRTIs (nevirapine, efavirenz, and rilviripine), were approximately 4-fold (based on IC50 values) more effective at low than at high Mg2+ concentrations. Drug-resistant HIV-1 RT mutants also displayed the Mg2+-dependent difference in susceptibility to NRTIs and NNRTIs. In summary, analyzing the efficiency of inhibitors under more physiologically relevant low-Mg2+ conditions yielded results dramatically different from those from measurements using commonly employed high-Mg2+ in vitro conditions. These results also emphasize differences in Mg2+ sensitivity between the translocation inhibitor EFdATP and other NRTIs.


Asunto(s)
Didesoxinucleótidos/farmacología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Magnesio/farmacología , Nucleósidos/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Nucleótidos de Desoxicitosina/farmacología , Nucleótidos de Desoxiguanina/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Electroforesis en Gel de Poliacrilamida , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/metabolismo , Humanos , Cinética , Mutación , Nucleótidos de Timina/farmacología , Zalcitabina/farmacología , Zidovudina/análogos & derivados , Zidovudina/farmacología
5.
Biochemistry ; 52(2): 432-44, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23268692

RESUMEN

We have used an ATP analogue 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSBA) to modify HCV replicase in order to identify the ATP binding site in the enzyme. FSBA inactivates HCV replicase activity in a concentration-dependent manner with a binding stoichiometry of 2 moles of FSBA per mole of enzyme. The enzyme activity is protected from FSBA in the presence of rNTP substrates or double-stranded RNA template primers that do not support ATP as the incoming nucleotide but not in the presence of polyrU.rA(26). HPLC analysis of tryptic peptides of FSBA-modified enzyme revealed the presence of two distinct peptides eluted at 23 and 36 min; these were absent in the control. Further we noted that both peptides were protected from FSBA modification in the presence of Mg·ATP. The LC/MS/MS analysis of the affinity-labeled tryptic peptides purified from HPLC, identified two major modification sites at positions 382 (Tyr), and 491 (Lys) and a minor site at position 38 (Tyr). To validate the functional significance of Tyr38, Tyr382, and Lys491 in catalysis, we individually substituted these residues by alanine and examined their ability to catalyze RdRp activity. We found that both Y382A and K491A mutants were significantly affected in their ability to catalyze RdRp activity while Y38A remained unaffected. We further observed that both Y382A and K491A mutants were not affected in their ability to bind template primer but were significantly affected in their ability to photo-cross-link ATP in the absence or presence of template primer.


Asunto(s)
Adenosina Trifosfato/metabolismo , Adenosina/análogos & derivados , Marcadores de Afinidad/química , Hepacivirus/enzimología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Adenosina/química , Adenosina/metabolismo , Marcadores de Afinidad/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Hepacivirus/química , Hepacivirus/genética , Hepatitis C/virología , Humanos , Simulación del Acoplamiento Molecular , Mutagénesis , Nucleótidos/metabolismo , Mutación Puntual , Unión Proteica , ARN Polimerasa Dependiente del ARN/genética , Alineación de Secuencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
6.
Res Sq ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865232

RESUMEN

Background: CXCR3 is a chemokine receptor and is expressed on innate and adaptive immune cells. It promotes the recruitment of T-lymphocytes and other immune cells to the inflammatory site in response to the binding of cognate chemokines. Upregulation of CXCR3 and its chemokines has been found during atherosclerotic lesion formation. Therefore, the detection of CXCR3 by positron emission tomography (PET) radiotracer may be a useful tool to detect atherosclerosis development noninvasively. Herein, we report the synthesis, radiosynthesis, and characterization of a novel fluorine-18 (F-18, 18 F) labeled small-molecule radiotracer for the imaging of the CXCR3 receptor in mouse models of atherosclerosis. Methods: The reference standard ( S )-2-(5-chloro-6-(4-(1-(4-chloro-2-fluorobenzyl)piperidin-4-yl)-3-ethylpiperazin-1-yl)pyridin-3-yl)-1,3,4-oxadiazole ( 1 ) and its corresponding precursor 9 were synthesized using organic syntheses. The radiotracer [ 18 F] 1 was prepared in one-pot, two-step synthesis via aromatic 18 F-substitution followed by reductive amination. Cell binding assays were conducted using 1 , [ 125 I]CXCL10, and CXCR3A- and CXCR3B-transfected human embryonic kidney (HEK) 293 cells. Dynamic PET imaging studies over 90 min were performed on C57BL/6 and apolipoprotein E (ApoE) knockout (KO) mice that were subjected to a normal and high-fat diet for 12 weeks, respectively. Blocking studies were conducted with preadministration of the hydrochloride salt of 1 (5 mg/kg) to assess the binding specificity. Time-activity curves (TACs) for [ 18 F] 1 in both mice were used to extract standard uptake values (SUVs). Biodistribution studies were performed on C57BL/6 mice, and the distribution of CXCR3 in the abdominal aorta of ApoE KO mice was assessed by immunohistochemistry (IHC). Results: The reference standard 1 and its precursor 9 were synthesized over 5 steps from starting materials in good to moderate yields. The measured K i values of CXCR3A and CXCR3B were 0.81 ± 0.02 nM and 0.31 ± 0.02 nM, respectively. [ 18 F] 1 was prepared with decay-corrected radiochemical yield (RCY) of 13 ± 2%, radiochemical purity (RCP) >99%, and specific activity of 44.4 ± 3.7 GBq/µmol at the end of synthesis (EOS) ( n =6). The baseline studies showed that [ 18 F] 1 displayed high uptake in the atherosclerotic aorta and brown adipose tissue (BAT) in ApoE KO mice. The uptake of [ 18 F] 1 in these regions was reduced significantly in self-blocking studies, demonstrating CXCR3 binding specificity. Contrary to this, no significant differences in uptake of [ 18 F] 1 in the abdominal aorta of C57BL/6 mice were observed in both baseline and blocking studies, indicating increased CXCR3 expression in atherosclerotic lesions. IHC studies demonstrated that [ 18 F] 1 -positive regions were correlated with CXCR3 expression, but some atherosclerotic plaques with significant size were not detected by [ 18 F] 1 , and their CXCR3 expressions were minimal. Conclusion: The novel radiotracer, [ 18 F] 1 was synthesized with good RCY and high RCP. In PET imaging studies, [ 18 F] 1 displayed CXCR3-specific uptake in the atherosclerotic aorta in ApoE KO mice. [ 18 F] 1 visualized CXCR3 expression in different regions in mice is in line with the tissue histology studies. Taken together, [ 18 F] 1 is a potential PET radiotracer for the imaging of CXCR3 in atherosclerosis.

7.
EJNMMI Res ; 13(1): 67, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37438543

RESUMEN

BACKGROUND: CXCR3 is a chemokine receptor and is expressed in innate and adaptive immune cells. It promotes the recruitment of T-lymphocytes and other immune cells to the inflammatory site in response to the binding of cognate chemokines. Upregulation of CXCR3 and its chemokines has been found during atherosclerotic lesion formation. Therefore, detection of CXCR3 by positron emission tomography (PET) radiotracer can be a useful tool for detecting the development of atherosclerosis in a noninvasive manner. Herein, we report the synthesis, radiosynthesis, and characterization of a novel fluorine-18 (F-18, 18F) labeled small-molecule radiotracer for the imaging of the CXCR3 receptor in mouse models of atherosclerosis. RESULTS: The reference standard 1 and its precursor 9 were synthesized over 5 steps from starting materials in good to moderate yields. The measured Ki values of CXCR3A and CXCR3B were 0.81 ± 0.02 nM and 0.31 ± 0.02 nM, respectively. [18F]1 was prepared by a two-step radiosynthesis with a decay-corrected radiochemical yield of 13 ± 2%, radiochemical purity > 99%, and specific activity of 44.4 ± 3.7 GBq/µmol at the end of synthesis (n = 6). The baseline studies showed that [18F]1 displayed high uptake in the atherosclerotic aorta and brown adipose tissue in Apolipoprotein E (ApoE) knockout (KO) mice fed with a high-fat diet over 12 weeks. The uptake of [18F]1 in these regions was reduced significantly in self-blocking studies, demonstrating CXCR3 binding specificity. Contrary to this, no significant differences in uptake of [18F]1 in the abdominal aorta of C57BL/6 control mice fed with a normal diet were observed in both baseline and blocking studies, indicating increased CXCR3 expression in atherosclerotic lesions. Immunohistochemistry studies demonstrated that [18F]1-positive regions were correlated with CXCR3 expression, but some atherosclerotic plaques with significant size were not detected by [18F]1, and their CXCR3 expressions were minimal. CONCLUSION: [18F]1 was synthesized with good radiochemical yield and high radiochemical purity. In PET imaging studies, [18F]1 displayed CXCR3-specific uptake in the atherosclerotic aorta in ApoE KO mice. [18F]1 visualized CXCR3 expression in different regions in mice aligned with the tissue histology studies. Taken together, [18F]1 is a potential PET radiotracer for imaging CXCR3 in atherosclerosis.

8.
Antimicrob Agents Chemother ; 56(3): 1630-4, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22155823

RESUMEN

The potent antiretroviral 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a promising experimental agent for treating HIV infection. Pre-steady-state kinetics were used to characterize the interaction of EFdA-triphosphate (EFdA-TP) with human mitochondrial DNA polymerase γ (Pol γ) to assess the potential for toxicity. Pol γ incorporated EFdA-TP 4,300-fold less efficiently than dATP, with an excision rate similar to ddATP. This strongly indicates EFdA is a poor Pol γ substrate, suggesting minimal Pol γ-mediated toxicity, although this should be examined under clinical settings.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Desoxiadenosinas/farmacología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Secuencia de Bases , ADN Polimerasa gamma , Desoxiadenosinas/metabolismo , Desoxiadenosinas/toxicidad , Transcriptasa Inversa del VIH/metabolismo , VIH-1/fisiología , Humanos , Cinética , Mitocondrias/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Inhibidores de la Transcriptasa Inversa/metabolismo , Inhibidores de la Transcriptasa Inversa/toxicidad
9.
J Virol ; 84(19): 9817-30, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20631150

RESUMEN

Natural evolution in primate lentiviral reverse transcriptase (RT) appears to have been constrained by the necessity to maintain function within an asymmetric protein composed of two identical primary amino acid sequences (66 kDa), of which one is cleaved (51 kDa). In this study, a detailed phylogenetic analysis now segregates groups O and M into clusters based on a cysteine or tyrosine residue located at position 181 of RT and linked to other signature residues. Divergent evolution of two group O (C181 or Y181) and the main (Y181 only) HIV-1 lineages did not appreciably impact RT activity or function. Group O RT structural models, based on group M subtype B RT crystal structures, revealed that most evolutionarily linked amino acids appear on a surface-exposed region of one subunit while in a noncatalytic RT pocket of the other subunit. This pocket binds nonnucleoside RT inhibitors (NNRTI); therefore, NNRTI sensitivity was used to probe enzyme differences in these group O and M lineages. In contrast to observations showing acquired drug resistance associated with fitness loss, the C181Y mutation in the C181 group O lineage resulted in a loss of intrinsic NNRTI resistance and was accompanied by fitness loss. Other mutations linked to the NNRTI-resistant C181 lineage also resulted in altered NNRTI sensitivity and a net fitness cost. Based on RT asymmetry and conservation of the intricate reverse transcription process, millions of years of divergent primate lentivirus evolution may be constrained to discrete mutations that appear primarily in the nonfunctional, solvent-accessible NNRTI binding pocket.


Asunto(s)
Fármacos Anti-VIH/farmacología , Evolución Molecular , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/genética , VIH-1/enzimología , VIH-1/genética , Inhibidores de la Transcriptasa Inversa/farmacología , Sustitución de Aminoácidos , Animales , Línea Celular , Farmacorresistencia Viral/genética , Transcriptasa Inversa del VIH/química , VIH-1/clasificación , VIH-1/efectos de los fármacos , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Filogenia , Primates , Subunidades de Proteína , Virus de la Inmunodeficiencia de los Simios/enzimología , Virus de la Inmunodeficiencia de los Simios/genética
10.
J Biol Chem ; 284(51): 35681-91, 2009 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19837673

RESUMEN

Nucleoside reverse transcriptase inhibitors (NRTIs) are employed in first line therapies for the treatment of human immunodeficiency virus (HIV) infection. They generally lack a 3'-hydroxyl group, and thus when incorporated into the nascent DNA they prevent further elongation. In this report we show that 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), a nucleoside analog that retains a 3'-hydroxyl moiety, inhibited HIV-1 replication in activated peripheral blood mononuclear cells with an EC(50) of 0.05 nm, a potency several orders of magnitude better than any of the current clinically used NRTIs. This exceptional antiviral activity stems in part from a mechanism of action that is different from approved NRTIs. Reverse transcriptase (RT) can use EFdA-5'-triphosphate (EFdA-TP) as a substrate more efficiently than the natural substrate, dATP. Importantly, despite the presence of a 3'-hydroxyl, the incorporated EFdA monophosphate (EFdA-MP) acted mainly as a de facto terminator of further RT-catalyzed DNA synthesis because of the difficulty of RT translocation on the nucleic acid primer possessing 3'-terminal EFdA-MP. EFdA-TP is thus a translocation-defective RT inhibitor (TDRTI). This diminished translocation kept the primer 3'-terminal EFdA-MP ideally located to undergo phosphorolytic excision. However, net phosphorolysis was not substantially increased, because of the apparently facile reincorporation of the newly excised EFdA-TP. Our molecular modeling studies suggest that the 4'-ethynyl fits into a hydrophobic pocket defined by RT residues Ala-114, Tyr-115, Phe-160, and Met-184 and the aliphatic chain of Asp-185. These interactions, which contribute to both enhanced RT utilization of EFdA-TP and difficulty in the translocation of 3'-terminal EFdA-MP primers, underlie the mechanism of action of this potent antiviral nucleoside.


Asunto(s)
ADN Viral/biosíntesis , Nucleótidos de Desoxiadenina/farmacología , Transcriptasa Inversa del VIH/química , VIH-1/enzimología , Modelos Moleculares , Inhibidores de la Transcriptasa Inversa/farmacología , Replicación Viral/efectos de los fármacos , Nucleótidos de Desoxiadenina/química , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/enzimología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Leucocitos Mononucleares/virología , Estructura Secundaria de Proteína , Inhibidores de la Transcriptasa Inversa/química , Transcripción Reversa/efectos de los fármacos
11.
Front Microbiol ; 11: 438, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265875

RESUMEN

The South African national combination antiretroviral therapy (cART) roll-out program started in 2006, with over 4.4 million people accessing treatment since it was first introduced. HIV-1 drug resistance can hamper the success of cART. This study determined the patterns of HIV-1 drug-resistance associated mutations (RAMs) in People Living with HIV-1 (PLHIV-1). Receiving first (for children below 3 years of age) and second-line (for adults) cART regimens in South Africa. During 2017 and 2018, 110 patients plasma samples were selected, 96 samples including those of 17 children and infants were successfully analyzed. All patients were receiving a boosted protease inhibitor (bPI) as part of their cART regimen. The viral sequences were analyzed for RAMs through genotypic resistance testing. We performed genotypic resistance testing (GRT) for Protease inhibitors (PIs), Reverse transcriptase inhibitors (RTIs) and Integrase strand transfer inhibitors (InSTIs). Viral sequences were subtyped using REGAv3 and COMET. Based on the PR/RT sequences, HIV-1 subtypes were classified as 95 (99%) HIV-1 subtype C (HIV-1C) while one sample as 02_AG. Integrase sequencing was successful for 89 sequences, and all the sequences were classified as HIV-1C (99%, 88/89) except one sequence classified CRF02_AG, as observed in PR/RT. Of the 96 PR/RT sequences analyzed, M184V/I (52/96; 54%) had the most frequent RAM nucleoside reverse transcriptase inhibitor (NRTI). The most frequent non-nucleoside reverse transcriptase inhibitor (NNRTI) RAM was K103N/S (40/96, 42%). Protease inhibitor (PI) RAMs M46I and V82A were present in 12 (13%) of the sequences analyzed. Among the InSTI major RAM two (2.2%) sequences have Y143R and T97A mutations while one sample had T66I. The accessory RAM E157Q was identified in two (2.2%). The data indicates that the majority of the patients failed on bPIs didn't have any mutation; therefore adherence could be major issue in these groups of individuals. We propose continued viral load monitoring for better management of infected PLHIV.

12.
J Signal Transduct ; 2012: 376470, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22649723

RESUMEN

TNF-related weak inducer of apoptosis (TWEAK) is a new member of the TNF superfamily. It signals through TNFRSF12A, commonly known as Fn14. The TWEAK-Fn14 interaction regulates cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis, tissue remodeling and inflammation. Although TWEAK has been reported to be associated with autoimmune diseases, cancers, stroke, and kidney-related disorders, the downstream molecular events of TWEAK-Fn14 signaling are yet not available in any signaling pathway repository. In this paper, we manually compiled from the literature, in particular those reported in human systems, the downstream reactions stimulated by TWEAK-Fn14 interactions. Our manual amassment of the TWEAK-Fn14 pathway has resulted in cataloging of 46 proteins involved in various biochemical reactions and TWEAK-Fn14 induced expression of 28 genes. We have enabled the availability of data in various standard exchange formats from NetPath, a repository for signaling pathways. We believe that this composite molecular interaction pathway will enable identification of new signaling components in TWEAK signaling pathway. This in turn may lead to the identification of potential therapeutic targets in TWEAK-associated disorders.

13.
Int J Curr Chem ; 2(4): 253-260, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22505793

RESUMEN

Despite the availability of a Hepatitis B Virus (HBV) vaccine, there are approximately 350 million people that are chronically infected with this virus that can cause liver cirrhosis and hepatocellular carcinoma. Currently, most approved anti-HBV drugs are nucleoside RT inhibitors (NRTIs) that target the viral enzyme reverse transcriptase (RT or P gene product). They suppress viral replication very efficiently but require long-term therapies, which invariably lead to the development of drug resistant viral strains with drug resistance mutations at the P gene. Because the reading frames of the P and S (surface antigen) genes partially overlap, selection of NRTI-resistance mutations may impart changes on the surface structural landscape of the virus. Conversely, genotypic differences on viral surface residues may also change the amino acid composition of the P gene and in terms affect HBV RT properties such as susceptibility to NRTIs. Interestingly, several studies have shown that patients infected with HBV from various genotypes respond differently to NRTI therapies. Here, we built a three-dimensional homology model of the catalytic core of HBV RT using HIV-1 RT as a template. We then mapped on the molecular model the residues that vary among various HBV genotypes. Surprisingly, the genotypic variability residues are generally in the vicinity of residues that are involved in NRTI resistance. Our results suggest that emergence of NRTI resistance mutations in HBV RT may be constrained by structural interactions with residues that vary among different genotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA