Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Cell Res ; 437(1): 114008, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38499143

RESUMEN

Hepatocytes are responsible for maintaining a stable blood glucose concentration during periods of nutrient scarcity. The breakdown of glycogen and de novo synthesis of glucose are crucial metabolic pathways deeply interlinked with lipid metabolism. Alterations in these pathways are often associated with metabolic diseases with serious clinical implications. Studying energy metabolism in human cells is challenging. Primary hepatocytes are still considered the golden standard for in vitro studies and have been instrumental in elucidating key aspects of energy metabolism found in vivo. As a result of several limitations posed by using primary cells, a multitude of alternative hepatocyte cellular models emerged as potential substitutes. Yet, there remains a lack of clarity regarding the precise applications for which these models accurately reflect the metabolic competence of primary hepatocytes. In this study, we compared primary hepatocytes, stem cell-derived hepatocytes, adult donor-derived liver organoids, immortalized Upcyte-hepatocytes and the hepatoma cell line HepG2s in their response to a glucose production challenge. We observed the highest net glucose production in primary hepatocytes, followed by organoids, stem-cell derived hepatocytes, Upcyte-hepatocytes and HepG2s. Glucogenic gene induction was observed in all tested models, as indicated by an increase in G6PC and PCK1 expression. Lipidomic analysis revealed considerable differences across the models, with organoids showing the closest similarity to primary hepatocytes in the common lipidome, comprising 347 lipid species across 19 classes. Changes in lipid profiles as a result of the glucose production challenge showed a variety of, and in some cases opposite, trends when compared to primary hepatocytes.


Asunto(s)
Carcinoma Hepatocelular , Glucosa , Humanos , Glucosa/metabolismo , Hepatocitos/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular , Metabolismo de los Lípidos , Lípidos , Hígado/metabolismo
2.
J Bacteriol ; 205(7): e0005923, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37367303

RESUMEN

YciF (STM14_2092) is a member of the domain of unknown function (DUF892) family. It is an uncharacterized protein involved in stress responses in Salmonella Typhimurium. In this study, we investigated the significance of YciF and its DUF892 domain during bile and oxidative stress responses of S. Typhimurium. Purified wild-type YciF forms higher order oligomers, binds to iron, and displays ferroxidase activity. Studies on the site-specific mutants revealed that the ferroxidase activity of YciF is dependent on the two metal binding sites present within the DUF892 domain. Transcriptional analysis displayed that the ΔcspE strain, which has compromised expression of YciF, encounters iron toxicity due to dysregulation of iron homeostasis in the presence of bile. Utilizing this observation, we demonstrate that the bile mediated iron toxicity in ΔcspE causes lethality, primarily through the generation of reactive oxygen species (ROS). Expression of wild-type YciF, but not the three mutants of the DUF892 domain, in ΔcspE alleviate ROS in the presence of bile. Our results establish the role of YciF as a ferroxidase that can sequester excess iron in the cellular milieu to counter ROS-associated cell death. This is the first report of biochemical and functional characterization of a member of the DUF892 family. IMPORTANCE The DUF892 domain has a wide taxonomic distribution encompassing several bacterial pathogens. This domain belongs to the ferritin-like superfamily; however, it has not been biochemically and functionally characterized. This is the first report of characterization of a member of this family. In this study, we demonstrate that S. Typhimurium YciF is an iron binding protein with ferroxidase activity, which is dependent on the metal binding sites present within the DUF892 domain. YciF combats iron toxicity and oxidative damage caused due to exposure to bile. The functional characterization of YciF delineates the significance of the DUF892 domain in bacteria. In addition, our studies on S. Typhimurium bile stress response divulged the importance of comprehensive iron homeostasis and ROS in bacteria.


Asunto(s)
Bilis , Salmonella typhimurium , Salmonella typhimurium/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Bilis/metabolismo , Ceruloplasmina/metabolismo , Proteínas Bacterianas/metabolismo , Estrés Oxidativo , Hierro/metabolismo
3.
Environ Monit Assess ; 194(12): 858, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36208349

RESUMEN

We examined 10 subsurface water, 5 benthic water and 19 sediment (02 cm) samples along a 518 km of the middle segment of the Ganga River to assess the possible improvements that resulted from the industrial shutdown during the COVID-19 pandemic. The sites included the main stem river, tributary confluences, and two point sources, one of which releases metal-rich effluents and the other flushes municipal sewage. We found significant declines in the carbon, nutrient and metal concentrations in both the water and sediment. Even the most polluted zones did not show hypoxia (dissolve oxygen; DO < 2.0 mg L-1) that had been observed in the previous year. Despite a significant decline in carbon and nitrogen as substrates, the activities of extracellular enzymes (EEs), such as ß-D-glucosidase, FDAase and protease in sediment (0-2 cm depth), increased significantly (p < 0.05) in response to the declining metal concentrations resulting from the industrial shutdown. We found strong negative correlations between EE activity and the concentrations of metal pollutants measured in 2019, but the correlations between these variables appeared poor in 2020 (lockdown period). Also, we found large variances (low stability coefficients) during the period of strong anthropogenic effects (2019). The study indicates that industrial sources are important contributors of metal pollution in the Ganga River and has relevance exploring river ecosystem recovery windows for management decisions.


Asunto(s)
COVID-19 , Metales Pesados , Contaminantes Químicos del Agua , Carbono , Control de Enfermedades Transmisibles , Ecosistema , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Glucosidasas , Humanos , Metales , Metales Pesados/análisis , Nitrógeno , Oxígeno , Pandemias , Péptido Hidrolasas , Ríos , Aguas del Alcantarillado , Agua , Contaminantes Químicos del Agua/análisis
4.
Arch Microbiol ; 203(2): 405-412, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32965527

RESUMEN

The use of microbial bioinoculants for managing plant diseases and promoting plant growth is an effective alternative approach to integrated farming. One of the devastating phytopathogens is Macrophomina phaseolina (Tassi) Goid. It is an omnipresent fungus infecting more than 500 plant species. It causes charcoal rot disease in soybean leading to 30-50% yield loss. Soybean Glycine max (L.) oil seed crop produced globally is highly susceptible to M. phaseolina. India is the fifth largest producer of soybean in the world. Madhya Pradesh is the largest soybean-producing state in India; Around 70% yield loss of soybean is accounted to M. phaseolina infection in India. Control of charcoal rot is the requisite of the current situation. Chemical control is not feasible due to saprophytic nature and prolonged survival of Macrophomina phaseolina. Chemical fungicides are expensive, toxic, hazardous, and cause pollution. Biological control is an effective approach to control this devastating fungus. The rhizosphere of soil is rich in beneficial microflora competent to suppress plant pathogens and also promote plant growth. PGPR have well-developed mechanisms that impart antagonistic traits to them. PGPR produces various antifungal metabolites siderophores and HCN which inhibit fungal growth, and can be used as potent BCA. Pseudomonas and Bacillus species have been reported effective against M. phaseolina. The mechanisms and antifungal compounds produced by these bacteria to control charcoal rot can be studied extensively. BCA or the metabolites secreted by them have the potential to develop effective bioformulations for soybean at the commercial level for sustainable agriculture.


Asunto(s)
Ascomicetos/fisiología , Glycine max/microbiología , Interacciones Microbianas , Control Biológico de Vectores , Enfermedades de las Plantas/prevención & control , Rizosfera , India , Enfermedades de las Plantas/microbiología , Aceite de Soja
5.
Arch Microbiol ; 203(1): 1-6, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32757115

RESUMEN

Plants absorb sulphate, the oxidized form of elemental sulphur (S°), from soil. Sulphur-oxidizing bacteria play a key role in transformation of sulphur in soil. Oil seed crops require high amount of sulphur and it plays an important role in the formation of proteins, vitamins and enzymes. It increases yield, oil content and protein content in oil seed crops. Sulphur is the important constituent of amino acids, viz. methionine, cystine, and cysteine. It necessitates various enzymatic, metabolic processes such as photosynthesis and nitrogen fixation. In the last few years, the prominence of sulphur in oil seed crop nutrition has been accepted as widespread occurrence of its inadequacy in agricultural soil. Approximately 41% of Indian soil is deficient in sulphur. The soil microbial population is the major enforcement behind sulphur transformation. They mineralize, immobilize, oxidize and reduce the elemental and other reduced forms of sulphur. The main step in transformation is oxidation carried out by microorganisms to convert sulphur into sulphate. The chemolithotrophic bacteria belonging to genus Thiobacillus are of primary importance; there are heterotrophic bacteria also which can oxidize sulphur in soil. The pH reduction at the time of oxidation helps in mineralization and absorption of other essential nutrients also. This property of sulphur-oxidizing bacteria (SOB) shows their potential to be used as bioinoculants. Bioformulations prepared using carrier-based formulations, immobilization, biostimulation, etc., are sustainable forms of fertilizers. These SOB inoculants can be used to increase the fertility and sulphate production in soil.


Asunto(s)
Bacterias/metabolismo , Productos Agrícolas/microbiología , Microbiología del Suelo , Suelo/química , Azufre/metabolismo , Inoculantes Agrícolas/metabolismo , Bacterias/clasificación , Fertilizantes , Oxidación-Reducción , Semillas/metabolismo , Sulfatos/metabolismo
6.
Agron Sustain Dev ; 41(2): 14, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33680098

RESUMEN

Timely crop planting is a foundation for climate-resilient rice-wheat systems of the Eastern Gangetic Plains-a global food insecurity and poverty hotspot. We hypothesize that the capacity of individual farmers to plant on time varies considerably, shaped by multifaceted enabling factors and constraints that are poorly understood. To address this knowledge gap, two complementary datasets were used to characterize drivers and decision processes that govern the timing of rice planting in this region. The first dataset was a large agricultural management survey (rice-wheat: n = 15,245; of which rice: n = 7597) from a broad geographic region that was analyzed by machine learning methods. The second dataset was a discussion-based survey (n = 112) from a more limited geography that we analyzed with graph theory tools to elicit nuanced information on planting decisions. By combining insights from these methods, we show for the first time that differences in rice planting times are primarily shaped by ecosystem and climate factors while social factors play a prominent secondary role. Monsoon onset, surface and groundwater availability, and land type determine village-scale mean planting times whereas, for resource-constrained farmers who tend to plant later ceteris paribus, planting is further influenced by access to farm machinery, seed, fertilizer, and labor. Also, a critical threshold for economically efficient pumping appears at a groundwater depth of around 4.5 m; below this depth, farmers do not irrigate and delay planting. Without collective action to spread risk through synchronous timely planting, ecosystem factors such as threats posed by pests and wild animals may further deter early planting by individual farmers. Accordingly, we propose a three-pronged strategy that combines targeted strengthening of agricultural input chains, agroadvisory development, and coordinated rice planting and wildlife conservation to support climate-resilient agricultural development in the Eastern Gangetic Plains.

7.
Field Crops Res ; 250: 107776, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32362715

RESUMEN

Conventionally managed rice-wheat systems of the eastern Indo-Gangetic Plains (E-IGP) that rely on soil puddling for rice and intensive tillage for wheat are low-yielding and resource-inefficient, leading to low profitability. While a host of alternative tillage and crop establishment (TCE) methods have been advocated as solutions for sustainably enhancing productivity and profitability, few systematic comparisons of these methods are reported. To address this gap, a three-year field study was conducted in Bihar, India with the goal of identifying TCE methods for rice-wheat systems that are high yielding, less resource-intensive, and more profitable. The following systems were evaluated: 1) puddled transplanted rice (PTR) followed by (fb) conventional tillage wheat (CTW) or zero-tillage wheat (ZTW); 2) machine transplanted rice in non-puddled soil (MTR) fb ZTW; 3) the system of rice intensification (SRI) fb system of wheat intensification (SWI); and 4) dry-seeded rice (DSR) fb ZTW. Rice cultivar duration (short versus medium-duration) was incorporated as a subplot treatment in all systems. Rice yields were similar with all methods, except DSR yield was 11 % lower and MTR yield was 7% higher than PTR in the third year. Cost of production was US$ 149 and 77 ha-1 lower in DSR and MTR, respectively, and US$ 84 ha-1 higher in SRI than PTR. The gross margin and benefit-cost (B:C) ratio was highest in MTR followed by DSR and lowest in SRI. In wheat, ZT resulted in a higher yield than CTW, especially when ZTW was cultivated after non-puddled rice (e.g., DSR or MTR). ZTW reduced production costs by US$ 69 ha-1, whereas SWI increased it by US$ 139 ha-1 relative to CTW. The higher yield and lower cost of production resulted in a higher gross margin (US$ 82-355 ha-1 and US$ 129-409 ha-1 higher than CTW and SWI, respectively) and a higher B:C ratio in ZTW treatments than CTW and SWI. At the system level, MTR or DSR followed by ZTW had both superior crop yields and consistently higher gross margins (US $133 to 382 ha-1) than other practices. On the other hand, the SRI fb SWI system had no yield advantage and poorer economic performance than conventional practices. In all systems, the inclusion of a medium-duration rice hybrid resulted in higher rice and system yields. These results suggest that significant gains in profitability are possible with emerging TCE practices in rice-wheat systems, but alternatives such as the SRI and SWI will likely erode farmer incomes.

8.
Ecotoxicol Environ Saf ; 117: 164-73, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25881134

RESUMEN

Hydroponic experiments were conducted to investigate an effect of exogenous application of proline (Pro; 25 µM) in alleviating arsenate (As(V); 5 and 25 µM) toxicity in Solanum melongena L. (eggplant) seedlings. Exposure of As(V) declined growth of eggplant, which was coincided with an enhanced accumulation of As. However, exogenous Pro application alleviated As(V) toxicity in eggplant seedlings by reducing the accumulation of As. The fluorescence characteristics (JIP-test): φP0, Ψ0, φE0, PIABS, ABS/RC, TR0/RC, ET0/RC, DI0/RC, NPQ and qP were also affected by As(V). However, the effects of As(V) were more prominent on PIABS DI0/RC and NPQ. In Pro treated seedlings, following parameters viz. φP0, Ψ0, φE0 and PIABS were stimulated, while, energy flux parameters (ABS/RC, TR0/RC, ET0/RC and DI0/RC) were inhibited. Toxic effects of As(V) on photochemistry of photosystem II (PS II) were ameliorated by an exogenous application of Pro. Oxidative stress markers: superoxide radical, hydrogen peroxide and malondialdehyde (lipid peroxidation) were enhanced by As(V) exposure, however, their levels were significantly diminished by an exogenous application of Pro. Treatment of As(V) stimulated the activities of superoxide dismutase, peroxidase and catalase except that of glutathione-S-transferase. Exogenous Pro application improved the activities of enzymatic antioxidants. The level of endogenous Pro was higher in As(V) treated as well as in Pro fed seedlings. The activity of a key enzyme of Pro biosynthesis: Δ(1)-pyrroline-5-carboxylate synthetase was higher in Pro fed seedlings. The activity of Pro dehydrogenase was inhibited under As(V) stress, and its activity was minimum in case of Pro+As(V) combination. These results indicate that Pro metabolism could play a key role in regulating the accumulation of As and levels of antioxidants, which concomitantly result into a better growth of eggplant seedlings when compared to the As(V) treatments alone.


Asunto(s)
Arseniatos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Prolina/farmacología , Solanum melongena/efectos de los fármacos , Antioxidantes/metabolismo , Arseniatos/metabolismo , Catalasa/metabolismo , Clorofila/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Malondialdehído/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Prolina/metabolismo , Pirroles , Especies Reactivas de Oxígeno/metabolismo , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/crecimiento & desarrollo , Solanum melongena/enzimología , Solanum melongena/crecimiento & desarrollo , Superóxido Dismutasa/metabolismo
9.
FEBS Lett ; 598(13): 1605-1619, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38503554

RESUMEN

Salmonella Typhimurium is an enteric pathogen that is highly tolerant to bile. Next-generation mRNA sequencing was performed to analyze the adaptive responses to bile in two S. Typhimurium strains: wild type (WT) and a mutant lacking cold shock protein E (ΔcspE). CspE is an RNA chaperone which is crucial for survival of S. Typhimurium during bile stress. This study identifies transcriptional responses in bile-tolerant WT and bile-sensitive ΔcspE. Upregulation of several genes involved in nitrate metabolism was observed, including fnr, a global regulator of nitrate metabolism. Notably, Δfnr was susceptible to bile stress. Also, complementation with fnr lowered reactive oxygen species and enhanced the survival of bile-sensitive ΔcspE. Importantly, intracellular nitrite amounts were highly induced in bile-treated WT compared to ΔcspE. Also, the WT strain pre-treated with nitrate displayed better growth with bile. These results demonstrate that nitrate-dependent metabolism promotes adaptation of S. Typhimurium to bile.


Asunto(s)
Nitratos , Salmonella typhimurium , Nitratos/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Perfilación de la Expresión Génica , Estrés Fisiológico/genética , Regulación Bacteriana de la Expresión Génica , Bilis/metabolismo , Transcriptoma , Especies Reactivas de Oxígeno/metabolismo
10.
Sci Total Environ ; 917: 170453, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38296084

RESUMEN

Municipal Solid Waste (MSW) management is a pressing global concern, with increasing interest in Waste-to-Energy Technologies (WTE-T) to divert waste from landfills. However, WTE-T adoption is hindered by financial uncertainties. The economic benefits of MSW treatment and energy generation must be balanced against environmental impact. Integrating cutting-edge technologies like Artificial Intelligence (AI) can enhance MSW management strategies and facilitate WTE-T adoption. This review paper explores waste classification, generation, and disposal methods, emphasizing public awareness to reduce waste. It discusses AI's role in waste management, including route optimization, waste composition forecasting, and process parameter optimization for energy generation. Various energy production techniques from MSW, such as high-solids anaerobic digestion, torrefaction, plasma pyrolysis, incineration, gasification, biodegradation, and hydrothermal carbonization, are examined for their advantages and challenges. The paper emphasizes risk assessment in MSW management, covering chemical, mechanical, biological, and health-related risks, aiming to identify and mitigate potential adverse effects. Electronic waste (E-waste) impact on human health and the environment is thoroughly discussed, highlighting the release of hazardous substances and their contribution to air, soil, and water pollution. The paper advocates for circular economy (CE) principles and waste-to-energy solutions to achieve sustainable waste management. It also addresses complexities and constraints faced by developing nations and proposes strategies to overcome them. In conclusion, this comprehensive review underscores the importance of risk assessment, the potential of AI and waste-to-energy solutions, and the need for sustainable waste management to safeguard public health and the environment.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Humanos , Residuos Sólidos/análisis , Eliminación de Residuos/métodos , Inteligencia Artificial , Administración de Residuos/métodos , India , Medición de Riesgo
11.
Cell Biochem Biophys ; 82(1): 223-233, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38040891

RESUMEN

The N-terminus of Histone H3 is proteolytically processed in aged chicken liver. A histone H3 N-terminus specific endopeptidase (named H3ase) has been purified from the nuclear extract of aged chicken liver. By sequencing and a series of biochemical methods including the demonstration of H3ase activity in bacterially expressed GDH, it was established that the H3ase activity was a moonlighting protease activity of glutamate dehydrogenase (GDH). However, the active site for the H3ase in the GDH remains elusive. Here, using cross-linking studies of the homogenously purified H3ase, we show that the GDH and the H3ase remain in the same native state. Further, the H3ase and GDH activities could be uncoupled by partial denaturation of GDH, suggesting strong evidence for the involvement of different active sites for GDH and H3ase activities. Through densitometry of the H3ase clipped H3 products, the H3ase activity was quantified and it was compared with the GDH activity of the chicken liver nuclear GDH. Furthermore, the H3ase mostly remained distributed in the perinuclear area as demonstrated by MNase digestion and immuno-localization of H3ase in chicken liver nuclei, as well as cultured mouse hepatocyte cells, suggesting that H3ase demonstrated regulated access to the chromatin. The present study thus broadly compares the H3ase and GDH activities of the chicken liver GDH.


Asunto(s)
Histonas , Péptido Hidrolasas , Ratones , Animales , Glutamato Deshidrogenasa/metabolismo , Endopeptidasas/metabolismo , Núcleo Celular/metabolismo
12.
J Chromatogr A ; 1714: 464524, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38056390

RESUMEN

Acyl-CoAs play a significant role in numerous physiological and metabolic processes making it important to assess their concentration levels for evaluating metabolic health. Considering the important role of acyl-CoAs, it is crucial to develop an analytical method that can analyze these compounds. Due to the structural variations of acyl-CoAs, multiple analytical methods are often required for comprehensive analysis of these compounds, which increases complexity and the analysis time. In this study, we have developed a method using a zwitterionic HILIC column that enables the coverage of free CoA and short- to long-chain acyl-CoA species in one analytical run. Initially, we developed the method using an LC-QTOF instrument for the identification of acyl-CoA species and optimizing their chromatography. Later, a targeted HILIC-MS/MS method was created in scheduled multiple reaction monitoring mode using a QTRAP MS detector. The performance of the method was evaluated based on various parameters such as linearity, precision, recovery and matrix effect. This method was applied to identify the difference in acyl-CoA profiles in HepG2 cells cultured in different conditions. Our findings revealed an increase in levels of acetyl-CoA, medium- and long-chain acyl-CoA while a decrease in the profiles of free CoA in the starved state, indicating a clear alteration in the fatty acid oxidation process.


Asunto(s)
Acilcoenzima A , Espectrometría de Masas en Tándem , Humanos , Acilcoenzima A/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Células Hep G2 , Interacciones Hidrofóbicas e Hidrofílicas
13.
Biomolecules ; 14(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38540716

RESUMEN

The severity of COVID-19 is linked to an imbalanced immune response. The dysregulated metabolism of small molecules and bioactive lipids has also been associated with disease severity. To promote understanding of the disease biochemistry and provide targets for intervention, we applied a range of LC-MS platforms to analyze over 100 plasma samples from patients with varying COVID-19 severity and with detailed clinical information on inflammatory responses (>30 immune markers). This is the third publication in a series, and it reports the results of comprehensive lipidome profiling using targeted LC-MS/MS. We identified 1076 lipid features across 25 subclasses, including glycerophospholipids, sterols, glycerolipids, and sphingolipids, among which 531 lipid features were dramatically changed in the plasma of intensive care unit (ICU) patients compared to patients in the ward. Patients in the ICU showed 1.3-57-fold increases in ceramides, (lyso-)glycerophospholipids, diglycerides, triglycerides, and plasmagen phosphoethanolamines, and 1.3-2-fold lower levels of a cyclic lysophosphatidic acid, sphingosine-1-phosphates, sphingomyelins, arachidonic acid-containing phospholipids, lactosylceramide, and cholesterol esters compared to patients in the ward. Specifically, phosphatidylinositols (PIs) showed strong fatty acid saturation-dependent behavior, with saturated fatty acid (SFA)- and monosaturated fatty acid (MUFA)-derived PI decreasing and polystaturated (PUFA)-derived PI increasing. We also found ~4000 significant Spearman correlations between lipids and multiple clinical markers of immune response with |R| ≥ 0.35 and FDR corrected Q < 0.05. Except for lysophosphatidic acid, lysophospholipids were positively associated with the CD4 fraction of T cells, and the cytokines IL-8 and IL-18. In contrast, sphingosine-1-phosphates were negatively correlated with innate immune markers such as CRP and IL-6. Further indications of metabolic changes in moderate COVID-19 disease were demonstrated in recovering ward patients compared to those at the start of hospitalization, where 99 lipid species were altered (6 increased by 30-62%; 93 decreased by 1.3-2.8-fold). Overall, these findings support and expand on early reports that dysregulated lipid metabolism is involved in COVID-19.


Asunto(s)
COVID-19 , Esfingosina/análogos & derivados , Humanos , Lipidómica , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ácidos Grasos/metabolismo , Glicerofosfolípidos , Lisofosfolípidos , Biomarcadores , Gravedad del Paciente , Fosfatos
14.
Environ Sci Pollut Res Int ; 30(21): 59891-59908, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37016262

RESUMEN

This field study was done to study the effects of pesticides chlorpyrifos and dimethoate singly and in combination with soil amendments like chemical fertilizer (CF), farmyard manure (FM), and 50% CF + 50% FM (CM) on various indices of growth, physio-biochemical parameters of brinjal, and their residual effect in tomato seedlings. As compared to the control, the decrease of 9.5 and 5.5%, 8.9 and 5.0% in fresh weight, dry weight respectively was recorded in the pesticide-only treatment in the brinjal crop. Pesticides when applied in combination with soil amendments depicted the highest growth of 105.4 and 118.2%, 104.1 and 115.1% in pesticides + CF treatment, 72.7 and 85.1%, 68.1 and 78.1% in pesticides + CM treatment, and 64.4 and 74.0%, 62.7 and 65.7% in pesticides + FM treatment compared to control. In tomato seedlings, the pesticides + CF treatment exhibited the lowest growth indices (25.5 and 31.9%, 26.4 and 28.8%) across the combined treatments while pesticide-only treatment depicted minimum growth compared to the control. In the case of photosynthesis rate and antioxidant activity, the combined treatments showed the trend as pesticides + CF > pesticides + CM > pesticides + FM in the brinjal crop; however, the trend became somewhat reversed in the tomato crop. The results indicated that soil-amended practices modulated pesticide-induced damage by upregulating photosynthetic performance, chlorophyll a fluorescence, and antioxidant balancing which might be associated with the mitigation of ROS-induced pesticide toxicity, and the effect was more pronounced with CM. Furthermore, our study was supported by non-metric-multidimensional scaling (NMDS)-constructed ordination plots by showing spatial patterns in different variables. The study might help in taking management decision to design mitigation actions for government and non-government agency at the farmers' level.


Asunto(s)
Cloropirifos , Plaguicidas , Solanum lycopersicum , Solanum melongena , Toxinas Biológicas , Plaguicidas/farmacología , Cloropirifos/farmacología , Dimetoato , Plantones , Suelo , Clorofila A , Antioxidantes/farmacología
15.
J Chromatogr A ; 1708: 464342, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696124

RESUMEN

The importance of lipids seen in studies of metabolism, cancer, the recent COVID-19 pandemic and other diseases has brought the field of lipidomics to the forefront of clinical research. Quantitative and comprehensive analysis is required to understand biological interactions among lipid species. However, lipidomic analysis is often challenging due to the various compositional structures, diverse physicochemical properties, and wide dynamic range of concentrations of lipids in biological systems. To study the comprehensive lipidome, a hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS)-based screening method with 1200 lipid features across 19 (sub)classes, including both nonpolar and polar lipids, has been developed. HILIC-MS/MS was selected due to its class separation property and fatty acyl chain level information. 3D models of class chromatographic retention behavior were established and evaluations of cross-class and within-class interferences were performed to avoid over-reporting these features. This targeted HILIC-MS/MS method was fully validated, with acceptable analytical parameters in terms of linearity, precision, reproducibility, and recovery. The accurate quantitation of 608 lipid species in the SRM 1950 NIST plasma was achieved using multi-internal standards per class and post-hoc correction, extending current databases by providing lipid concentrations resolved at fatty acyl chain level. The overall correlation coefficients (R2) of measured concentrations with values from literature range from 0.64 to 0.84. The applicability of the developed targeted lipidomics method was demonstrated by discovering 520 differential lipid features related to COVID-19 severity. This high coverage and targeted approach will aid in future investigations of the lipidome in various disease contexts.


Asunto(s)
COVID-19 , Lipidómica , Humanos , Espectrometría de Masas en Tándem , Pandemias , Reproducibilidad de los Resultados , Cromatografía Liquida , Gravedad del Paciente , Lípidos
16.
Mol Carcinog ; 51(3): 231-43, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21432909

RESUMEN

Bromelain, obtained from pineapple, is already in use clinically as adjunct in chemotherapy. Our objective was to test its ability to act as a sole anti-cancer agent. Therefore, we describe its anti-proliferative, anti-inflammatory and subsequent anti-cancer effects in vitro, against human epidermoid carcinoma-A431 and melanoma-A375 cells. Bromelain exhibited reduction in proliferation of both these cell-lines and suppressed their potential for anchorage-independent growth. Further, suppression of inflammatory signaling by bromelain was evident by inhibition of Akt regulated-nuclear factor-kappaB activation via suppression of inhibitory-kappaBα phosphorylation and concomitant reduction in cyclooxygenase-2. Since, the inflammatory cascade is well-known to be closely allied to cancer; we studied the effect of bromelain on events/molecules central to it. Bromelain caused depletion of intracellular glutathione and generation of reactive oxygen-species followed by mitochondrial membrane depolarization. This led to bromelain-induced cell-cycle arrest at G(2)/M phase which was mediated by modulation of cyclin B1, phospho-cdc25C, Plk1, phospho-cdc2, and myt1. This was subsequently followed by induction of apoptosis, indicated by membrane-blebbing, modulation of Bax-Bcl-2 ratio, Apaf-1, caspase-9, and caspase-3; chromatin-condensation, increase in caspase-activity and DNA-fragmentation. Bromelain afforded substantial anti-cancer potential in these settings; hence we suggest it as a potential prospect for anti-cancer agent besides only an additive in chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Bromelaínas/farmacología , Carcinoma de Células Escamosas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Melanoma/metabolismo , FN-kappa B/antagonistas & inhibidores , Apoptosis/genética , Bromelaínas/toxicidad , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Activación Enzimática/efectos de los fármacos , Glutatión/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
17.
Physiol Mol Biol Plants ; 18(3): 229-36, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23814437

RESUMEN

Germination and early seedling growth are important for establishment of maize because maize is chilling sensitive crop and low temperature during early period of growth can be detrimental to subsequent crop growth and productivity. Therefore, it is important to protect maize seedling from cold stress. A study was conducted on induced cold tolerance by 24-epibrassinoslide (EBR) at the Indian Agricultural Research Institute, New Delhi, India. Maize seedlings were raised in green house condition (25/18 °C day-night temperatures). Ten days old seedlings were treated with EBR (0.0, 0.01, 0.1, 1.0 and 10 µM) and then divided into two sets, one set was kept in greenhouse (25/18 °C day-night temperatures) and another was transferred to net house (cold stress). Data on various morpho-physiological traits was recorded after 7, 14 and 21 days of treatment. Exogenous application of 1.0 µM EBR had significant effect on growth and morpho-physiological traits under both conditions. The maize seedlings treated with EBR were more tolerant to cold stress than the untreated one. Significant increase in plant height, dry matter accumulation, chlorophyll content, total soluble proteins and starch contents was observed under both conditions, however, the results were more pronounced under cold stress. 1.0 µ M concentration being the most effective under both conditions. Maintenance of high tissue water content, reduced membrane injury index, increased total chlorophyll, soluble sugar and protein content were taken as the possible indicators of EBR induced chilling tolerance.

18.
Environ Sci Pollut Res Int ; 29(40): 60968-60986, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35435553

RESUMEN

This study investigates possible improvement in water quality and ecosystem functions in the Ganga River as influenced by COVID-19 lockdown in India. A total of 132 samples were collected during summer-2020 low flow (coinciding COVID-19 lockdown) for water (sub-surface and sediment-water interface) and 132 samples separately for sediment (river bottom and land-water interface) considering 518-km main river stem including three-point sources (one releases urban sewage and the other two add metal-rich industrial effluents) and a pollution-impacted tributary. Parameters such as dissolved oxygen deficit and the concentrations of carbon, nutrients (N and P), and heavy metals were measured in water. Sediment P-release was measured in bottom sediment whereas extracellular enzymes (EE; alkaline phosphatase, FDAase, protease, and ß-D-glucosidase) and CO2 emission were measured at land-water interface to evaluate changes in water quality and ecosystem functions. The data comparisons were made with preceding year (2019) measurements. Sediment-P release and the concentrations of carbon, nutrients, and heavy metals declined significantly (p<0.05) in 2020 compared to those recorded in 2019. Unlike the preceding year, we did not observe benthic hypoxia (DO <2.0 mg L-1) in 2020 even at the most polluted site. The EE activities, which declined sharply in the year 2019, showed improvement during the 2020. The stability coefficient and correlative evidences also showed a large improvement in the water quality and functional variables. Positive changes in functional attributes indicated a transient recovery when human perturbations withdrawn. The study suggests that timing the ecosystem recovery windows, as observed here, may help taking management decision to design mitigation actions for rivers to recover from anthropogenic perturbations.


Asunto(s)
COVID-19 , Metales Pesados , Contaminantes Químicos del Agua , Carbono , Control de Enfermedades Transmisibles , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Humanos , India , Metales Pesados/análisis , Ríos , Contaminantes Químicos del Agua/análisis , Calidad del Agua
19.
Int J Reprod Biomed ; 20(6): 491-500, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35958960

RESUMEN

Background: Limited studies have compared pregnancy outcomes with medroxyprogesterone acetate (MPA) vs. gonadotropin-releasing hormone antagonist (GnRH antagonist) in ovarian stimulation protocols. The results show heterogeneity. Objective: This study aims to assess pregnancy outcomes with the use of MPA instead of GnRH antagonist for ovarian stimulation in donor-recipient cycles. Materials and Methods: This retrospective study was carried out from June 2016 to May 2019. The study included 250 donors receiving ovarian stimulation with 2 different protocols: group 1 (n = 109) receiving GnRH antagonist (0.25 mg/day) from the 5 th or 6 th day of menses and group 2 (n = 141) receiving MPA (10 mg/day) from the second day of menses. In 384 recipients, 2 good-quality blastocysts were transferred after endometrial preparation. The primary endpoint was live birth in recipients. Results: The results showed that live birth was comparable in both recipient groups (59% vs. 60%, OR: 0.63, 95% CI: 0.13-2.99, p = 0.559). The number of live-born fetuses (adjusted OR: 0.57, 95% CI: 0.31-1.05, p > 0.01) showed no significant difference in both groups. However, the implantation rate with twin sacs was significantly lower in group 2 (adjusted OR: 0.57, 95% CI: 0.33-0.99, p = 0.05). The regression analysis for good-quality blastocyst proportion was comparable (OR: 0.63, 95% CI: -4.33-5.60, p = 0.802) in both donor groups. The mean stimulation cost in group 2 was less than in group 1. Conclusion: MPA had a comparable live birth and embryological outcomes in both groups. Oral administration makes it convenient, acceptable, and patient-friendly. Its cost-effectiveness and convenience open new possibilities in ovarian stimulation protocols.

20.
Cureus ; 14(10): e30531, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36415423

RESUMEN

Objective We aim to implement the practice of birth companions (BC) (from 0% to 90%) during labor to provide respectful maternity care (RMC) during the coronavirus disease 2019 (COVID-19) pandemic. Methods This was a prospective quality improvement (QI) study conducted in the Department of Obstetrics and Gynecology at All India Institute of Medical Sciences (AIIMS), Rishikesh, India. The methodology given by the World Health Organization (WHO)'s Point of Care Continuous Quality Improvement (POCQI) manual was followed, and standard tools of quality improvement were used to attain the objective. Results The QI team conducted a cause and effect analysis to understand the reasons why birth companions were not allowed during childbirth. The Pareto principle derived at three most important causes of the problem: absence of a defined policy, ignorance of guidelines promoting BC even during the pandemic, and relatives could enter wards only after a negative reverse transcriptase polymerase chain reaction (RTPCR) report, which could take up to 48 hours. Multiple change ideas were tested by means of Plan-Do-Study-Act (PDSA) cycles that were successful in bringing about desired change and improvement in the delivery of quality healthcare. Conclusion QI methodology was effective in promoting and achieving more than 90% birth companionship in labor and thus helpful in providing respectful maternity care even during the COVID-19 pandemic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA