Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 21(4): 464-476, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32205882

RESUMEN

Although mouse infection models have been extensively used to study the host response to Mycobacterium tuberculosis, their validity in revealing determinants of human tuberculosis (TB) resistance and disease progression has been heavily debated. Here, we show that the modular transcriptional signature in the blood of susceptible mice infected with a clinical isolate of M. tuberculosis resembles that of active human TB disease, with dominance of a type I interferon response and neutrophil activation and recruitment, together with a loss in B lymphocyte, natural killer and T cell effector responses. In addition, resistant but not susceptible strains of mice show increased lung B cell, natural killer and T cell effector responses in the lung upon infection. Notably, the blood signature of active disease shared by mice and humans is also evident in latent TB progressors before diagnosis, suggesting that these responses both predict and contribute to the pathogenesis of progressive M. tuberculosis infection.


Asunto(s)
Transcriptoma/inmunología , Tuberculosis/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/microbiología , Humanos , Interferón Tipo I/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/microbiología , Pulmón/inmunología , Pulmón/microbiología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/inmunología , Linfocitos T/inmunología , Linfocitos T/microbiología , Tuberculosis/microbiología
2.
Nat Immunol ; 19(11): 1159-1168, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30333612

RESUMEN

Blood transcriptomics analysis of tuberculosis has revealed an interferon-inducible gene signature that diminishes in expression after successful treatment; this promises improved diagnostics and treatment monitoring, which are essential for the eradication of tuberculosis. Sensitive radiography revealing lung abnormalities and blood transcriptomics have demonstrated heterogeneity in patients with active tuberculosis and exposed asymptomatic people with latent tuberculosis, suggestive of a continuum of infection and immune states. Here we describe the immune response to infection with Mycobacterium tuberculosis revealed through the use of transcriptomics, as well as differences among clinical phenotypes of infection that might provide information on temporal changes in host immunity associated with evolving infection. We also review the diverse blood transcriptional signatures, composed of small sets of genes, that have been proposed for the diagnosis of tuberculosis and the identification of at-risk asymptomatic people and suggest novel approaches for the development of such biomarkers for clinical use.


Asunto(s)
Biomarcadores/sangre , Perfilación de la Expresión Génica/métodos , Tuberculosis/inmunología , Humanos , Transcriptoma/inmunología , Tuberculosis/sangre , Tuberculosis/diagnóstico
3.
Nature ; 604(7907): 749-756, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35444283

RESUMEN

Amplification of the CCNE1 locus on chromosome 19q12 is prevalent in multiple tumour types, particularly in high-grade serous ovarian cancer, uterine tumours and gastro-oesophageal cancers, where high cyclin E levels are associated with genome instability, whole-genome doubling and resistance to cytotoxic and targeted therapies1-4. To uncover therapeutic targets for tumours with CCNE1 amplification, we undertook genome-scale CRISPR-Cas9-based synthetic lethality screens in cellular models of CCNE1 amplification. Here we report that increasing CCNE1 dosage engenders a vulnerability to the inhibition of the PKMYT1 kinase, a negative regulator of CDK1. To inhibit PKMYT1, we developed RP-6306, an orally bioavailable and selective inhibitor that shows single-agent activity and durable tumour regressions when combined with gemcitabine in models of CCNE1 amplification. RP-6306 treatment causes unscheduled activation of CDK1 selectively in CCNE1-overexpressing cells, promoting early mitosis in cells undergoing DNA synthesis. CCNE1 overexpression disrupts CDK1 homeostasis at least in part through an early activation of the MMB-FOXM1 mitotic transcriptional program. We conclude that PKMYT1 inhibition is a promising therapeutic strategy for CCNE1-amplified cancers.


Asunto(s)
Ciclina E , Proteínas de la Membrana , Neoplasias Ováricas , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Proteína Quinasa CDC2 , Ciclina E/genética , Femenino , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Neoplasias/genética , Neoplasias Ováricas/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Mutaciones Letales Sintéticas
4.
J Immunol ; 207(2): 523-533, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34193602

RESUMEN

Upon Ag encounter, T cells can rapidly divide and form an effector population, which plays an important role in fighting acute infections. In humans, little is known about the molecular markers that distinguish such effector cells from other T cell populations. To address this, we investigated the molecular profile of T cells present in individuals with active tuberculosis (ATB), where we expect Ag encounter and expansion of effector cells to occur at higher frequency in contrast to Mycobacterium tuberculosis-sensitized healthy IGRA+ individuals. We found that the frequency of HLA-DR+ cells was increased in circulating CD4 T cells of ATB patients, and was dominantly expressed in M. tuberculosis Ag-specific CD4 T cells. We tested and confirmed that HLA-DR is a marker of recently divided CD4 T cells upon M. tuberculosis Ag exposure using an in vitro model examining the response of resting memory T cells from healthy IGRA+ to Ags. Thus, HLA-DR marks a CD4 T cell population that can be directly detected ex vivo in human peripheral blood, whose frequency is increased during ATB disease and contains recently divided Ag-specific effector T cells. These findings will facilitate the monitoring and study of disease-specific effector T cell responses in the context of ATB and other infections.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Linfocitos T CD4-Positivos/inmunología , Antígenos HLA-DR , Humanos
5.
PLoS Comput Biol ; 17(10): e1009459, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34613979

RESUMEN

Recent technological advances have made the gathering of comprehensive gene expression datasets a commodity. This has shifted the limiting step of transcriptomic studies from the accumulation of data to their analyses and interpretation. The main problem in analyzing transcriptomics data is that the number of independent samples is typically much lower (<100) than the number of genes whose expression is quantified (typically >14,000). To address this, it would be desirable to reduce the gathered data's dimensionality without losing information. Clustering genes into discrete modules is one of the most commonly used tools to accomplish this task. While there are multiple clustering approaches, there is a lack of informative metrics available to evaluate the resultant clusters' biological quality. Here we present a metric that incorporates known ground truth gene sets to quantify gene clusters' biological quality derived from standard clustering techniques. The GECO (Ground truth Evaluation of Clustering Outcomes) metric demonstrates that quantitative and repeatable scoring of gene clusters is not only possible but computationally lightweight and robust. Unlike current methods, it allows direct comparison between gene clusters generated by different clustering techniques. It also reveals that current cluster analysis techniques often underestimate the number of clusters that should be formed from a dataset, which leads to fewer clusters of lower quality. As a test case, we applied GECO combined with k-means clustering to derive an optimal set of co-expressed gene modules derived from PBMC, which we show to be superior to previously generated modules generated on whole-blood. Overall, GECO provides a rational metric to test and compare different clustering approaches to analyze high-dimensional transcriptomic data.


Asunto(s)
Biología Computacional/métodos , Leucocitos Mononucleares/metabolismo , Familia de Multigenes/genética , Transcriptoma/genética , Bases de Datos Factuales , Humanos
6.
J Allergy Clin Immunol ; 143(2): 577-590, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29902480

RESUMEN

BACKGROUND: Although several studies link high levels of IL-6 and soluble IL-6 receptor (sIL-6R) to asthma severity and decreased lung function, the role of IL-6 trans-signaling (IL-6TS) in asthmatic patients is unclear. OBJECTIVE: We sought to explore the association between epithelial IL-6TS pathway activation and molecular and clinical phenotypes in asthmatic patients. METHODS: An IL-6TS gene signature obtained from air-liquid interface cultures of human bronchial epithelial cells stimulated with IL-6 and sIL-6R was used to stratify lung epithelial transcriptomic data (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes [U-BIOPRED] cohorts) by means of hierarchical clustering. IL-6TS-specific protein markers were used to stratify sputum biomarker data (Wessex cohort). Molecular phenotyping was based on transcriptional profiling of epithelial brushings, pathway analysis, and immunohistochemical analysis of bronchial biopsy specimens. RESULTS: Activation of IL-6TS in air-liquid interface cultures reduced epithelial integrity and induced a specific gene signature enriched in genes associated with airway remodeling. The IL-6TS signature identified a subset of patients with IL-6TS-high asthma with increased epithelial expression of IL-6TS-inducible genes in the absence of systemic inflammation. The IL-6TS-high subset had an overrepresentation of frequent exacerbators, blood eosinophilia, and submucosal infiltration of T cells and macrophages. In bronchial brushings Toll-like receptor pathway genes were upregulated, whereas expression of cell junction genes was reduced. Sputum sIL-6R and IL-6 levels correlated with sputum markers of remodeling and innate immune activation, in particular YKL-40, matrix metalloproteinase 3, macrophage inflammatory protein 1ß, IL-8, and IL-1ß. CONCLUSIONS: Local lung epithelial IL-6TS activation in the absence of type 2 airway inflammation defines a novel subset of asthmatic patients and might drive airway inflammation and epithelial dysfunction in these patients.


Asunto(s)
Asma/inmunología , Biomarcadores/metabolismo , Células Epiteliales/fisiología , Inflamación/inmunología , Interleucina-6/metabolismo , Pulmón/fisiología , Esputo/metabolismo , Adulto , Remodelación de las Vías Aéreas (Respiratorias) , Células Cultivadas , Estudios de Cohortes , Estudios Transversales , Regulación de la Expresión Génica , Humanos , Masculino , Fenotipo , Receptores de Interleucina-6/metabolismo , Hipersensibilidad Respiratoria , Transducción de Señal , Transcriptoma
7.
Am J Respir Cell Mol Biol ; 58(2): 261-270, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28933920

RESUMEN

Asthma arises from the complex interplay of inflammatory pathways in diverse cell types and tissues. We sought to undertake a comprehensive transcriptomic assessment of the epithelium and airway T cells that remain understudied in asthma and investigate interactions between multiple cells and tissues. Epithelial brushings and flow-sorted CD3+ T cells from sputum and BAL were obtained from healthy subjects (n = 19) and patients with asthma (mild, moderate, and severe asthma; n = 46). Gene expression was assessed using Affymetrix HT HG-U133+ PM GeneChips, and results were validated by real-time quantitative PCR. In the epithelium, IL-13 response genes (POSTN, SERPINB2, and CLCA1), mast cell mediators (CPA3 and TPSAB1), inducible nitric oxide synthase, and cystatins (CST1, CST2, and CST4) were upregulated in mild asthma, but, except for cystatins, were suppressed by corticosteroids in moderate asthma. In severe asthma-with predominantly neutrophilic phenotype-several distinct processes were upregulated, including neutrophilia (TCN1 and MMP9), mucins, and oxidative stress responses. The majority of the disease signature was evident in sputum T cells in severe asthma, where 267 genes were differentially regulated compared with health, highlighting compartmentalization of inflammation. This signature included IL-17-inducible chemokines (CXCL1, CXCL2, CXCL3, IL8, and CSF3) and chemoattractants for neutrophils (IL8, CCL3, and LGALS3), T cells, and monocytes. A protein interaction network in severe asthma highlighted signatures of responses to bacterial infections across tissues (CEACAM5, CD14, and TLR2), including Toll-like receptor signaling. In conclusion, the activation of innate immune pathways in the airways suggests that activated T cells may be driving neutrophilic inflammation and steroid-insensitive IL-17 response in severe asthma.


Asunto(s)
Asma/genética , Asma/inmunología , Células Epiteliales/inmunología , Mucosa Respiratoria/inmunología , Linfocitos T/inmunología , Adulto , Anciano , Antígenos de Neoplasias/metabolismo , Moléculas de Adhesión Celular/metabolismo , Quimiocinas/metabolismo , Canales de Cloruro/metabolismo , Cistatinas/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Interleucina-13/inmunología , Interleucina-17/inmunología , Masculino , Persona de Mediana Edad , Receptores del Factor Estimulante de Colonias/metabolismo , Serpinas/metabolismo , Esputo/metabolismo , Adulto Joven
8.
Anal Chem ; 90(22): 13400-13408, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30335973

RESUMEN

Integration of multiomics data remains a key challenge in fulfilling the potential of comprehensive systems biology. Multiple-block orthogonal projections to latent structures (OnPLS) is a projection method that simultaneously models multiple data matrices, reducing feature space without relying on a priori biological knowledge. In order to improve the interpretability of OnPLS models, the associated multi-block variable influence on orthogonal projections (MB-VIOP) method is used to identify variables with the highest contribution to the model. This study combined OnPLS and MB-VIOP with interactive visualization methods to interrogate an exemplar multiomics study, using a subset of 22 individuals from an asthma cohort. Joint data structure in six data blocks was assessed: transcriptomics; metabolomics; targeted assays for sphingolipids, oxylipins, and fatty acids; and a clinical block including lung function, immune cell differentials, and cytokines. The model identified seven components, two of which had contributions from all blocks (globally joint structure) and five that had contributions from two to five blocks (locally joint structure). Components 1 and 2 were the most informative, identifying differences between healthy controls and asthmatics and a disease-sex interaction, respectively. The interactions between features selected by MB-VIOP were visualized using chord plots, yielding putative novel insights into asthma disease pathogenesis, the effects of asthma treatment, and biological roles of uncharacterized genes. For example, the gene ATP6 V1G1, which has been implicated in osteoporosis, correlated with metabolites that are dysregulated by inhaled corticoid steroids (ICS), providing insight into the mechanisms underlying bone density loss in asthma patients taking ICS. These results show the potential for OnPLS, combined with MB-VIOP variable selection and interaction visualization techniques, to generate hypotheses from multiomics studies and inform biology.


Asunto(s)
Asma/metabolismo , Análisis de Datos , Biología de Sistemas/métodos , Adulto , Asma/genética , Femenino , Genómica/métodos , Humanos , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Análisis Multivariante , Proteómica/métodos , Linfocitos T/metabolismo , Adulto Joven
9.
Am J Respir Cell Mol Biol ; 57(4): 428-438, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28481620

RESUMEN

The asthmatic lung is prone to respiratory viral infections that exacerbate the symptoms of the underlying disease. Recent work has suggested that a deficient T-helper cell type 1 response in early life may lead to these aberrant antiviral responses. To study the development of long-term dysregulation of innate responses, which is a hallmark of asthma, we investigated whether the inflammatory environment of the airway epithelium can modulate antiviral gene expression via epigenetic mechanisms. We primed AALEB cells, a human bronchial epithelial cell line, with IFN-γ and IL-13, and subsequently infected the cells with respiratory syncytial virus (RSV). We then analyzed the expression of innate antiviral genes and their epigenetic markers. Priming epithelial cells with IFN-γ reduced the RSV viral load. Microarray analysis identified that IFN-γ priming enhanced retinoic acid-inducible gene (RIG)-I mRNA expression, and this expression correlated with epigenetic changes at the RIG-I promoter that influenced its transcription. Using chromatin immunoprecipitation, we observed a reduction of trimethylated histone 3 lysine 9 at the RIG-I promoter. Addition of inhibitor BIX-01294 to this model indicated an involvement of lysine methyltransferase G9a in RIG-I epigenetic regulation. These data suggest that prior exposure to IFN-γ may leave an epigenetic mark on the chromatin that enhances airway cells' ability to resist infection, possibly via epigenetic upregulation of RIG-I. These observations provide further evidence for a crucial role of IFN-γ in the development of mature antiviral responses within a model of respiratory infection. Further clinical validation is required to determine whether this effect in early life leads to changes in antiviral responses associated with asthma.


Asunto(s)
Proteína 58 DEAD Box/inmunología , Células Epiteliales/inmunología , Histonas/inmunología , Inmunidad Innata , Interferón gamma/inmunología , Regiones Promotoras Genéticas/inmunología , Mucosa Respiratoria/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/inmunología , Línea Celular , Epigénesis Genética/inmunología , Células Epiteliales/patología , Células Epiteliales/virología , Femenino , Regulación Enzimológica de la Expresión Génica/inmunología , Humanos , Masculino , Metilación , Receptores Inmunológicos , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Infecciones por Virus Sincitial Respiratorio/patología
10.
PLoS Pathog ; 9(12): e1003834, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24385908

RESUMEN

The possibility of HIV-1 eradication has been limited by the existence of latently infected cellular reservoirs. Studies to examine control of HIV latency and potential reactivation have been hindered by the small numbers of latently infected cells found in vivo. Major conceptual leaps have been facilitated by the use of latently infected T cell lines and primary cells. However, notable differences exist among cell model systems. Furthermore, screening efforts in specific cell models have identified drug candidates for "anti-latency" therapy, which often fail to reactivate HIV uniformly across different models. Therefore, the activity of a given drug candidate, demonstrated in a particular cellular model, cannot reliably predict its activity in other cell model systems or in infected patient cells, tested ex vivo. This situation represents a critical knowledge gap that adversely affects our ability to identify promising treatment compounds and hinders the advancement of drug testing into relevant animal models and clinical trials. To begin to understand the biological characteristics that are inherent to each HIV-1 latency model, we compared the response properties of five primary T cell models, four J-Lat cell models and those obtained with a viral outgrowth assay using patient-derived infected cells. A panel of thirteen stimuli that are known to reactivate HIV by defined mechanisms of action was selected and tested in parallel in all models. Our results indicate that no single in vitro cell model alone is able to capture accurately the ex vivo response characteristics of latently infected T cells from patients. Most cell models demonstrated that sensitivity to HIV reactivation was skewed toward or against specific drug classes. Protein kinase C agonists and PHA reactivated latent HIV uniformly across models, although drugs in most other classes did not.


Asunto(s)
Linfocitos T CD4-Positivos/virología , VIH-1/fisiología , Modelos Biológicos , Activación Viral , Latencia del Virus , Acetamidas/farmacología , Adulto , Linfocitos T CD4-Positivos/efectos de los fármacos , Células Cultivadas , Células HEK293 , Infecciones por VIH/inmunología , Infecciones por VIH/patología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Interleucina-7/farmacología , Células Jurkat , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Vorinostat
11.
J Proteome Res ; 13(11): 5094-105, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25072778

RESUMEN

Linking gender-specific differences to the molecular etiology of obesity has been largely based on genomic and transcriptomic evidence lacking endophenotypic insight and is not applicable to the extracellular fluid compartments, or the milieu intérieur, of the human body. To address this need, this study profiled the whole serum proteomes of age-matched nondiabetic overweight and obese females (n = 28) and males (n = 31) using a multiplex design with pooled biological and technical replicates. To bypass basic limitations of immunodepletion-based strategies, subproteome enrichment by size-exclusion chromatography (SuPrE-SEC) followed by iTRAQ 2D-LC-nESI-FTMS analysis was used. The study resulted in the reproducible analysis of 2472 proteins (peptide FDR < 5%, q < 0.05). A total of 248 proteins exhibited significant modulation between men and women (p < 0.05) that mapped to pathways associated with ß-estradiol, lipid and prostanoid metabolism, vitamin D function, immunity/inflammation, and the complement and coagulation cascades. This novel endophenotypic signature of gender-specific differences in whole serum confirmed and expanded the results of previous physiologic and pharmacologic studies exploring sexual dimorphism at the genomic and transcriptomic level in tissues and cells. Conclusively, the multifactorial and pleiotropic nature of human obesity exhibits sexual dimorphism in the circulating proteome of importance to clinical study design.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Cromatografía en Gel/métodos , Obesidad/sangre , Sobrepeso/sangre , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Adulto , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad/metabolismo , Sobrepeso/metabolismo , Mapas de Interacción de Proteínas , Caracteres Sexuales , Factores Sexuales , Transcriptoma
12.
BMC Microbiol ; 13: 121, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23714098

RESUMEN

BACKGROUND: Coccidioides immitis is a dimorphic fungus that causes disease in mammals, including human beings. It grows as a mycelium containing arthroconidia in the soil and in the host arthroconidia differentiates into a unique structure called a spherule. We used a custom open reading frame oligonucleotide microarray to compare the transcriptome of C. immitis mycelia with early (day 2) and late stage (day 8) spherules grown in vitro. All hybridizations were done in quadruplicate and stringent criteria were used to identify significantly differentially expressed genes. RESULTS: 22% of C. immitis genes were differentially expressed in either day 2 or day 8 spherules compared to mycelia, and about 12% of genes were differentially expressed comparing the two spherule time points. Oxireductases, including an extracellular superoxide dismutase, were upregulated in spherules and they may be important for defense against oxidative stress. Many signal transduction molecules, including pleckstrin domain proteins, protein kinases and transcription factors were downregulated in day 2 spherules. Several genes involved in sulfur metabolism were downregulated in day 8 spherules compared to day 2 spherules. Transcription of amylase and α (1,3) glucan synthase was upregulated in spherules; these genes have been found to be important for differentiation to yeast in Histoplasma. There were two homologs of 4-hydroxyphenylpyruvate dioxygenase (4-HPPD); transcription of one was up- and the other downregulated. We tested the effect of a 4-HPPD inhibitor, nitisinone, on mycelial and spherule growth and found that it inhibited mycelial but not spherule growth. CONCLUSIONS: Transcription of many genes was differentially expressed in the process of arthroconidia to spherule conversion and spherule maturation, as would be expected given the magnitude of the morphologic change. The transcription profile of early stage (day 2) spherules was different than late stage (day 8) endosporulating spherules. In addition, very few genes that are important for spore to yeast conversion in other dimorphic fungi are differentially expressed in C. immitis mycelia and spherules suggesting that dimorphic fungi may have evolved different mechanisms to differentiate from mycelia to tissue invasive forms.


Asunto(s)
Coccidioides/crecimiento & desarrollo , Coccidioides/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Animales , Coccidioides/citología , Coccidioides/aislamiento & purificación , Genes Fúngicos , Hifa/citología , Hifa/genética , Hifa/crecimiento & desarrollo , Ratones , Análisis por Micromatrices , Hibridación de Ácido Nucleico , Transcripción Genética
13.
BMC Microbiol ; 12: 218, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23006927

RESUMEN

BACKGROUND: Coccidioidomycosis results from airborne infections caused by either Coccidioides immitis or C. posadasii. Both are pathogenic fungi that live in desert soil in the New World and can infect normal hosts, but most infections are self-limited. Disseminated infections occur in approximately 5% of cases and may prove fatal. Mouse models of the disease have identified strains that are resistant (e.g. DBA/2) or susceptible (e.g. C57BL/6) to these pathogens. However, the genetic and immunological basis for this difference has not been fully characterized. RESULTS: Microarray technology was used to identify genes that were differentially expressed in lung tissue between resistant DBA/2 and sensitive C57BL/6 mice after infection with C. immitis. Differentially expressed genes were mapped onto biological pathways, gene ontologies, and protein interaction networks, which revealed that innate immune responses mediated by Type II interferon (i.e., IFNG) and the signal transducer and activator of transcription 1 (STAT1) contribute to the resistant phenotype. In addition, upregulation of hypoxia inducible factor 1A (HIF1A), possibly as part of a larger inflammatory response mediated by tumor necrosis factor alpha (TNFA), may also contribute to resistance. Microarray gene expression was confirmed by real-time quantitative PCR for a subset of 12 genes, which revealed that IFNG HIF1A and TNFA, among others, were significantly differentially expressed between the two strains at day 14 post-infection. CONCLUSION: These results confirm the finding that DBA/2 mice express more Type II interferon and interferon stimulated genes than genetically susceptible strains and suggest that differential expression of HIF1A may also play a role in protection.


Asunto(s)
Coccidioides/inmunología , Coccidioidomicosis/genética , Coccidioidomicosis/inmunología , Interacciones Huésped-Patógeno , Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Interferón gamma/inmunología , Animales , Coccidioides/patogenicidad , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Análisis por Micromatrices
14.
Front Immunol ; 13: 1087010, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713384

RESUMEN

Introduction: Previous studies suggest that monocytes are an important contributor to tuberculosis (TB)-specific immune signatures in blood. Methods: Here, we carried out comprehensive single-cell profiling of monocytes in paired blood samples of active TB (ATB) patients at diagnosis and mid-treatment, and healthy controls. Results: At diagnosis, ATB patients displayed increased monocyte-to-lymphocyte ratio, increased frequency of CD14+CD16- and intermediate CD14+CD16+ monocytes, and upregulation of interferon signaling genes that significantly overlapped with previously reported blood TB signatures in both CD14+ subsets. In this cohort, we identified additional transcriptomic and functional changes in intermediate CD14+CD16+ monocytes, such as the upregulation of inflammatory and MHC-II genes, and increased capacity to activate T cells, reflecting overall increased activation in this population. Single-cell transcriptomics revealed that distinct subsets of intermediate CD14+CD16+ monocytes were responsible for each gene signature, indicating significant functional heterogeneity within this population. Finally, we observed that changes in CD14+ monocytes were transient, as they were no longer observed in the same ATB patients mid-treatment, suggesting they are associated with disease resolution. Discussion: Together, our study demonstrates for the first time that both intermediate and classical monocytes individually contribute to blood immune signatures of ATB and identifies novel subsets and associated gene signatures that may hold disease relevance.


Asunto(s)
Monocitos , Tuberculosis , Humanos , Linfocitos , Perfilación de la Expresión Génica , Linfocitos T
15.
Sci Rep ; 11(1): 302, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33432042

RESUMEN

The self-antigen α-synuclein (α-syn) was recently shown to be associated with Parkinson's disease (PD). Here we mapped the T cell receptor (TCR) repertoire of α-syn-specific T cells from six PD patients. The self-antigen α-syn-specific repertoire was compared to the repertoire of T cells specific for pertussis (PT), as a representative foreign antigen that most individuals are exposed to, revealing that the repertoire for α-syn was as diverse as the repertoire for PT. The diversity of PT-specific clonotypes was similar between individuals with PD diagnosis and age-matched healthy controls. We found that the TCR repertoire was specific to each PD patient, and no shared TCRs among patients were defined, likely due to differences in HLA expression that select for different subsets of epitope-specific TCR rearrangements. This study provides the first characterization of α-syn-specific TCR clonotypes in individuals with PD. Antigen-specific TCRs can serve as immunotherapeutics and diagnostics, and means to track longitudinal changes in specific T cells, and disease progression.


Asunto(s)
Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Masculino
16.
EBioMedicine ; 74: 103746, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34902786

RESUMEN

BACKGROUND: The century-old Mycobacterium bovis Bacillus Calmette-Guerin (BCG) remains the only licensed vaccine against tuberculosis (TB). Despite this, there is still a lot to learn about the immune response induced by BCG, both in terms of phenotype and specificity. METHODS: We investigated immune responses in adult individuals pre and 8 months post BCG vaccination. We specifically determined changes in gene expression, cell subset composition, DNA methylome, and the TCR repertoire induced in PBMCs and CD4 memory T cells associated with antigen stimulation by either BCG or a Mycobacterium tuberculosis (Mtb)-derived peptide pool. FINDINGS: Following BCG vaccination, we observed increased frequencies of CCR6+ CD4 T cells, which includes both Th1* (CXCR3+CCR6+) and Th17 subsets, and mucosal associated invariant T cells (MAITs). A large number of immune response genes and pathways were upregulated post BCG vaccination with similar patterns observed in both PBMCs and memory CD4 T cells, thus suggesting a substantial role for CD4 T cells in the cellular response to BCG. These upregulated genes and associated pathways were also reflected in the DNA methylome. We described both qualitative and quantitative changes in the BCG-specific TCR repertoire post vaccination, and importantly found evidence for similar TCR repertoires across different subjects. INTERPRETATION: The immune signatures defined herein can be used to track and further characterize immune responses induced by BCG, and can serve as reference for benchmarking novel vaccination strategies.


Asunto(s)
Vacuna BCG/administración & dosificación , Linfocitos T CD4-Positivos/metabolismo , Metilación de ADN , Perfilación de la Expresión Génica/métodos , Receptores de Antígenos de Linfocitos T/genética , Receptores CCR6/metabolismo , Adulto , Vacuna BCG/inmunología , Regulación de la Expresión Génica , Humanos , Estudios Longitudinales , Masculino , RNA-Seq , Células TH1/metabolismo , Células Th17/metabolismo
17.
J Exp Med ; 218(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34491266

RESUMEN

Blood transcriptomics have revealed major characteristics of the immune response in active TB, but the signature early after infection is unknown. In a unique clinically and temporally well-defined cohort of household contacts of active TB patients that progressed to TB, we define minimal changes in gene expression in incipient TB increasing in subclinical and clinical TB. While increasing with time, changes in gene expression were highest at 30 d before diagnosis, with heterogeneity in the response in household TB contacts and in a published cohort of TB progressors as they progressed to TB, at a bulk cohort level and in individual progressors. Blood signatures from patients before and during anti-TB treatment robustly monitored the treatment response distinguishing early and late responders. Blood transcriptomics thus reveal the evolution and resolution of the immune response in TB, which may help in clinical management of the disease.


Asunto(s)
Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/inmunología , Antituberculosos/uso terapéutico , Evolución Biológica , Trazado de Contacto , Femenino , Expresión Génica , Humanos , Masculino , Estudios Prospectivos , Factores de Riesgo , Análisis de Secuencia de ARN , Resultado del Tratamiento , Tuberculosis Pulmonar/diagnóstico por imagen , Tuberculosis Pulmonar/tratamiento farmacológico
18.
Tuberculosis (Edinb) ; 131: 102127, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34555657

RESUMEN

Although only a small fraction will ever develop the active form of tuberculosis (ATB) disease, chemoprophylaxis treatment in latent TB infected (LTBI) individuals is an effective strategy to control pathogen transmission. Characterizing immune responses in LTBI upon chemoprophylactic treatment is important to facilitate treatment monitoring, and thus improve TB control strategies. Here, we studied changes in the blood transcriptome in a cohort of 42 LTBI and 8 ATB participants who received anti-TB therapy. Based on the expression of previously published gene signatures of progression to ATB, we stratified the LTBI cohort in two groups and examined if individuals deemed to be at elevated risk of developing ATB before treatment (LTBI-Risk) differed from others (LTBI-Other). We found that LTBI-Risk and LTBI-Other groups were associated with two distinct transcriptomic treatment signatures, with the LTBI-Risk signature resembling that of treated ATB patients. Notably, overlapping genes between LTBI-Risk and ATB treatment signatures were associated with risk of progression to ATB and interferon (IFN) signaling, and were selectively downregulated upon treatment in the LTBI-Risk but not the LTBI-Other group. Our results suggest that transcriptomic reprogramming following treatment of LTBI is heterogeneous and can be used to distinguish LTBI-Risk individuals from the LTBI cohort at large.


Asunto(s)
Tuberculosis Latente/sangre , Mycobacterium tuberculosis/efectos de los fármacos , Transcriptoma/genética , Adulto , Estudios de Casos y Controles , Inglaterra , Femenino , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/estadística & datos numéricos , Humanos , Tuberculosis Latente/genética , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/crecimiento & desarrollo , Medicina Estatal/organización & administración , Medicina Estatal/estadística & datos numéricos , Análisis de Matrices Tisulares/métodos , Análisis de Matrices Tisulares/estadística & datos numéricos , Transcriptoma/inmunología
19.
Metallomics ; 12(7): 1070-1082, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32297622

RESUMEN

Airborne particulate matter (PM) is a leading cause of mortality and morbidity. However, understanding of the range and mechanisms of effects of PM components is poor. PM generated in underground railways is rich in metals, especially iron. In the ultrafine (UFPM; <0.1 µm diameter) fraction, the combination of small size and metal enrichment poses an unknown health risk. This study aimed to analyse transcriptomic responses to underground UFPM in primary bronchial epithelial cells (PBECs), a key site of PM deposition. The oxidation state of iron in UFPM from an underground station was determined by X-ray absorption near edge structure (XANES) spectroscopy. Antioxidant response was assayed using a reporter cell line transfected with an antioxidant response element (ARE)-luciferase construct. Differentiated PBECs were exposed to UFPM for 6 h or 24 h for RNA-Seq and RT-qPCR analysis. XANES showed predominance of redox-active Fe3O4, with ROS generation confirmed by induction of ARE-luciferase expression. 6 h exposure of PBECs to UFPM identified 52 differentially expressed genes (DEGs), especially associated with epithelial maintenance, whereas 24 h exposure yielded 23 DEGs, particularly involved with redox homeostasis and metal binding. At both timepoints, there was upregulation of members of the metallothionein family, low molecular weight proteins with antioxidant activity whose main function is binding and homeostasis of zinc and copper ions, but not iron ions. This upregulation was partially inhibited by metal chelation or ROS scavenging. These data suggest differential regulation of responses to metal-rich UFPM depending on exposure period, and highlight novel pathways and markers of PM exposure, with the role of metallothioneins warranting further investigation.


Asunto(s)
Metalotioneína/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Cobre/metabolismo , Metalotioneína/química , Oxidación-Reducción , Material Particulado/química , Especies Reactivas de Oxígeno/metabolismo , Espectroscopía de Absorción de Rayos X , Zinc/metabolismo
20.
Nat Commun ; 10(1): 2887, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253760

RESUMEN

Understanding how immune challenges elicit different responses is critical for diagnosing and deciphering immune regulation. Using a modular strategy to interpret the complex transcriptional host response in mouse models of infection and inflammation, we show a breadth of immune responses in the lung. Lung immune signatures are dominated by either IFN-γ and IFN-inducible, IL-17-induced neutrophil- or allergy-associated gene expression. Type I IFN and IFN-γ-inducible, but not IL-17- or allergy-associated signatures, are preserved in the blood. While IL-17-associated genes identified in lung are detected in blood, the allergy signature is only detectable in blood CD4+ effector cells. Type I IFN-inducible genes are abrogated in the absence of IFN-γ signaling and decrease in the absence of IFNAR signaling, both independently contributing to the regulation of granulocyte responses and pathology during Toxoplasma gondii infection. Our framework provides an ideal tool for comparative analyses of transcriptional signatures contributing to protection or pathogenesis in disease.


Asunto(s)
Candidiasis/metabolismo , Interferón Tipo I/metabolismo , Interferón gamma/metabolismo , Melioidosis/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Animales , Burkholderia pseudomallei , Candida albicans , Candidiasis/inmunología , Candidiasis/microbiología , Regulación de la Expresión Génica/inmunología , Subtipo H3N2 del Virus de la Influenza A , Interferón Tipo I/sangre , Interferón Tipo I/genética , Interferón gamma/sangre , Interferón gamma/genética , Pulmón , Melioidosis/inmunología , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Receptor de Interferón alfa y beta , Receptores de Interferón , Infecciones por Virus Sincitial Respiratorio/inmunología , Receptor de Interferón gamma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA