Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(6): 1179-1194.e15, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36931245

RESUMEN

The human brain undergoes rapid development at mid-gestation from a pool of neural stem and progenitor cells (NSPCs) that give rise to the neurons, oligodendrocytes, and astrocytes of the mature brain. Functional study of these cell types has been hampered by a lack of precise purification methods. We describe a method for prospectively isolating ten distinct NSPC types from the developing human brain using cell-surface markers. CD24-THY1-/lo cells were enriched for radial glia, which robustly engrafted and differentiated into all three neural lineages in the mouse brain. THY1hi cells marked unipotent oligodendrocyte precursors committed to an oligodendroglial fate, and CD24+THY1-/lo cells marked committed excitatory and inhibitory neuronal lineages. Notably, we identify and functionally characterize a transcriptomically distinct THY1hiEGFRhiPDGFRA- bipotent glial progenitor cell (GPC), which is lineage-restricted to astrocytes and oligodendrocytes, but not to neurons. Our study provides a framework for the functional study of distinct cell types in human neurodevelopment.


Asunto(s)
Células-Madre Neurales , Ratones , Animales , Humanos , Células-Madre Neurales/metabolismo , Neuronas , Diferenciación Celular/fisiología , Neuroglía/metabolismo , Encéfalo , Astrocitos
2.
Cell ; 175(1): 43-56.e21, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241615

RESUMEN

Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation toward cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis. VIDEO ABSTRACT.


Asunto(s)
Desarrollo Óseo/fisiología , Huesos/citología , Células Madre Hematopoyéticas/citología , Animales , Huesos/metabolismo , Cartílago/citología , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Análisis de la Célula Individual/métodos , Células Madre/citología , Células del Estroma/citología , Transcriptoma/genética
3.
Cell ; 166(2): 451-467, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27419872

RESUMEN

Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence, comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end, here, we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart. We defined the extrinsic signals controlling each binary lineage decision, enabling us to logically block differentiation toward unwanted fates and rapidly steer pluripotent stem cells toward 80%-99% pure human mesodermal lineages at most branchpoints. This strategy enabled the generation of human bone and heart progenitors that could engraft in respective in vivo models. Mapping stepwise chromatin and single-cell gene expression changes in mesoderm development uncovered somite segmentation, a previously unobservable human embryonic event transiently marked by HOPX expression. Collectively, this roadmap enables navigation of mesodermal development to produce transplantable human tissue progenitors and uncover developmental processes. VIDEO ABSTRACT.


Asunto(s)
Mesodermo/citología , Transducción de Señal , Proteínas Morfogenéticas Óseas/metabolismo , Huesos/citología , Huesos/metabolismo , Corazón/crecimiento & desarrollo , Proteínas de Homeodominio/metabolismo , Humanos , Mesodermo/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/metabolismo , Línea Primitiva/citología , Línea Primitiva/metabolismo , Análisis de la Célula Individual , Somitos/metabolismo , Células Madre , Proteínas Supresoras de Tumor/metabolismo , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/metabolismo
4.
Immunity ; 54(3): 586-602.e8, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33691136

RESUMEN

To identify disease-relevant T cell receptors (TCRs) with shared antigen specificity, we analyzed 778,938 TCRß chain sequences from 178 non-small cell lung cancer patients using the GLIPH2 (grouping of lymphocyte interactions with paratope hotspots 2) algorithm. We identified over 66,000 shared specificity groups, of which 435 were clonally expanded and enriched in tumors compared to adjacent lung. The antigenic epitopes of one such tumor-enriched specificity group were identified using a yeast peptide-HLA A∗02:01 display library. These included a peptide from the epithelial protein TMEM161A, which is overexpressed in tumors and cross-reactive epitopes from Epstein-Barr virus and E. coli. Our findings suggest that this cross-reactivity may underlie the presence of virus-specific T cells in tumor infiltrates and that pathogen cross-reactivity may be a feature of multiple cancers. The approach and analytical pipelines generated in this work, as well as the specificity groups defined here, present a resource for understanding the T cell response in cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Mapeo Epitopo/métodos , Epítopos de Linfocito T/genética , Neoplasias Pulmonares/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Linfocitos T/inmunología , Algoritmos , Presentación de Antígeno , Antígenos de Neoplasias/metabolismo , Células Cultivadas , Reacciones Cruzadas , Epítopos de Linfocito T/metabolismo , Antígeno HLA-A2/metabolismo , Humanos , Unión Proteica , Especificidad del Receptor de Antígeno de Linfocitos T
5.
Cell ; 160(1-2): 285-98, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25594184

RESUMEN

How are skeletal tissues derived from skeletal stem cells? Here, we map bone, cartilage, and stromal development from a population of highly pure, postnatal skeletal stem cells (mouse skeletal stem cells, mSSCs) to their downstream progenitors of bone, cartilage, and stromal tissue. We then investigated the transcriptome of the stem/progenitor cells for unique gene-expression patterns that would indicate potential regulators of mSSC lineage commitment. We demonstrate that mSSC niche factors can be potent inducers of osteogenesis, and several specific combinations of recombinant mSSC niche factors can activate mSSC genetic programs in situ, even in nonskeletal tissues, resulting in de novo formation of cartilage or bone and bone marrow stroma. Inducing mSSC formation with soluble factors and subsequently regulating the mSSC niche to specify its differentiation toward bone, cartilage, or stromal cells could represent a paradigm shift in the therapeutic regeneration of skeletal tissues.


Asunto(s)
Huesos/citología , Células Madre Mesenquimatosas/citología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Cartílago/citología , Linaje de la Célula , Cruzamientos Genéticos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
6.
Cell ; 160(6): 1196-208, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25728669

RESUMEN

Most cell-surface receptors for cytokines and growth factors signal as dimers, but it is unclear whether remodeling receptor dimer topology is a viable strategy to "tune" signaling output. We utilized diabodies (DA) as surrogate ligands in a prototypical dimeric receptor-ligand system, the cytokine Erythropoietin (EPO) and its receptor (EpoR), to dimerize EpoR ectodomains in non-native architectures. Diabody-induced signaling amplitudes varied from full to minimal agonism, and structures of these DA/EpoR complexes differed in EpoR dimer orientation and proximity. Diabodies also elicited biased or differential activation of signaling pathways and gene expression profiles compared to EPO. Non-signaling diabodies inhibited proliferation of erythroid precursors from patients with a myeloproliferative neoplasm due to a constitutively active JAK2V617F mutation. Thus, intracellular oncogenic mutations causing ligand-independent receptor activation can be counteracted by extracellular ligands that re-orient receptors into inactive dimer topologies. This approach has broad applications for tuning signaling output for many dimeric receptor systems.


Asunto(s)
Receptores de Eritropoyetina/química , Receptores de Eritropoyetina/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Línea Celular , Cristalografía por Rayos X , Dimerización , Eritropoyetina/metabolismo , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutación Puntual , Ingeniería de Proteínas , Receptores de Eritropoyetina/agonistas , Receptores de Eritropoyetina/antagonistas & inhibidores , Alineación de Secuencia
7.
Nature ; 619(7971): 860-867, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37468622

RESUMEN

Many cancers originate from stem or progenitor cells hijacked by somatic mutations that drive replication, exemplified by adenomatous transformation of pulmonary alveolar epithelial type II (AT2) cells1. Here we demonstrate a different scenario: expression of KRAS(G12D) in differentiated AT1 cells reprograms them slowly and asynchronously back into AT2 stem cells that go on to generate indolent tumours. Like human lepidic adenocarcinoma, the tumour cells slowly spread along alveolar walls in a non-destructive manner and have low ERK activity. We find that AT1 and AT2 cells act as distinct cells of origin and manifest divergent responses to concomitant WNT activation and KRAS(G12D) induction, which accelerates AT2-derived but inhibits AT1-derived adenoma proliferation. Augmentation of ERK activity in KRAS(G12D)-induced AT1 cells increases transformation efficiency, proliferation and progression from lepidic to mixed tumour histology. Overall, we have identified a new cell of origin for lung adenocarcinoma, the AT1 cell, which recapitulates features of human lepidic cancer. In so doing, we also uncover a capacity for oncogenic KRAS to reprogram a differentiated and quiescent cell back into its parent stem cell en route to adenomatous transformation. Our work further reveals that irrespective of a given cancer's current molecular profile and driver oncogene, the cell of origin exerts a pervasive and perduring influence on its subsequent behaviour.


Asunto(s)
Adenocarcinoma del Pulmón , Reprogramación Celular , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Células Madre , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Reprogramación Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células Madre/metabolismo , Células Madre/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo
8.
Nature ; 597(7875): 256-262, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34381212

RESUMEN

Loss of skeletal integrity during ageing and disease is associated with an imbalance in the opposing actions of osteoblasts and osteoclasts1. Here we show that intrinsic ageing of skeletal stem cells (SSCs)2 in mice alters signalling in the bone marrow niche and skews the differentiation of bone and blood lineages, leading to fragile bones that regenerate poorly. Functionally, aged SSCs have a decreased bone- and cartilage-forming potential but produce more stromal lineages that express high levels of pro-inflammatory and pro-resorptive cytokines. Single-cell RNA-sequencing studies link the functional loss to a diminished transcriptomic diversity of SSCs in aged mice, which thereby contributes to the transformation of the bone marrow niche. Exposure to a youthful circulation through heterochronic parabiosis or systemic reconstitution with young haematopoietic stem cells did not reverse the diminished osteochondrogenic activity of aged SSCs, or improve bone mass or skeletal healing parameters in aged mice. Conversely, the aged SSC lineage promoted osteoclastic activity and myeloid skewing by haematopoietic stem and progenitor cells, suggesting that the ageing of SSCs is a driver of haematopoietic ageing. Deficient bone regeneration in aged mice could only be returned to youthful levels by applying a combinatorial treatment of BMP2 and a CSF1 antagonist locally to fractures, which reactivated aged SSCs and simultaneously ablated the inflammatory, pro-osteoclastic milieu. Our findings provide mechanistic insights into the complex, multifactorial mechanisms that underlie skeletal ageing and offer prospects for rejuvenating the aged skeletal system.


Asunto(s)
Envejecimiento/patología , Huesos/patología , Senescencia Celular , Inflamación/patología , Nicho de Células Madre , Células Madre/patología , Animales , Proteína Morfogenética Ósea 2/metabolismo , Regeneración Ósea , Linaje de la Célula , Femenino , Curación de Fractura , Hematopoyesis , Factor Estimulante de Colonias de Macrófagos/metabolismo , Masculino , Ratones , Células Mieloides/citología , Osteoclastos/citología , Rejuvenecimiento
9.
Proc Natl Acad Sci U S A ; 121(11): e2308401121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38446849

RESUMEN

Generation of defined neuronal subtypes from human pluripotent stem cells remains a challenge. The proneural factor NGN2 has been shown to overcome experimental variability observed by morphogen-guided differentiation and directly converts pluripotent stem cells into neurons, but their cellular heterogeneity has not been investigated yet. Here, we found that NGN2 reproducibly produces three different kinds of excitatory neurons characterized by partial coactivation of other neurotransmitter programs. We explored two principle approaches to achieve more precise specification: prepatterning the chromatin landscape that NGN2 is exposed to and combining NGN2 with region-specific transcription factors. Unexpectedly, the chromatin context of regionalized neural progenitors only mildly altered genomic NGN2 binding and its transcriptional response and did not affect neurotransmitter specification. In contrast, coexpression of region-specific homeobox factors such as EMX1 resulted in drastic redistribution of NGN2 including recruitment to homeobox targets and resulted in glutamatergic neurons with silenced nonglutamatergic programs. These results provide the molecular basis for a blueprint for improved strategies for generating a plethora of defined neuronal subpopulations from pluripotent stem cells for therapeutic or disease-modeling purposes.


Asunto(s)
Genes Homeobox , Neuronas , Humanos , Cromatina , Neurotransmisores , Prosencéfalo
10.
Proc Natl Acad Sci U S A ; 121(23): e2315363121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805281

RESUMEN

Regulatory T cells (Tregs) are central in controlling immune responses, and dysregulation of their function can lead to autoimmune disorders or cancer. Despite extensive studies on Tregs, the basis of epigenetic regulation of human Treg development and function is incompletely understood. Long intergenic noncoding RNAs (lincRNA)s are important for shaping and maintaining the epigenetic landscape in different cell types. In this study, we identified a gene on the chromosome 6p25.3 locus, encoding a lincRNA, that was up-regulated during early differentiation of human Tregs. The lincRNA regulated the expression of interleukin-2 receptor alpha (IL2RA), and we named it the lincRNA regulator of IL2RA (LIRIL2R). Through transcriptomics, epigenomics, and proteomics analysis of LIRIL2R-deficient Tregs, coupled with global profiling of LIRIL2R binding sites using chromatin isolation by RNA purification, followed by sequencing, we identified IL2RA as a target of LIRIL2R. This nuclear lincRNA binds upstream of the IL2RA locus and regulates its epigenetic landscape and transcription. CRISPR-mediated deletion of the LIRIL2R-bound region at the IL2RA locus resulted in reduced IL2RA expression. Notably, LIRIL2R deficiency led to reduced expression of Treg-signature genes (e.g., FOXP3, CTLA4, and PDCD1), upregulation of genes associated with effector T cells (e.g., SATB1 and GATA3), and loss of Treg-mediated suppression.


Asunto(s)
Factores de Transcripción Forkhead , Subunidad alfa del Receptor de Interleucina-2 , ARN Largo no Codificante , Linfocitos T Reguladores , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Subunidad alfa del Receptor de Interleucina-2/genética , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Diferenciación Celular/genética
11.
Nature ; 587(7835): 619-625, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33208946

RESUMEN

Although single-cell RNA sequencing studies have begun to provide compendia of cell expression profiles1-9, it has been difficult to systematically identify and localize all molecular cell types in individual organs to create a full molecular cell atlas. Here, using droplet- and plate-based single-cell RNA sequencing of approximately 75,000 human cells across all lung tissue compartments and circulating blood, combined with a multi-pronged cell annotation approach, we create an extensive cell atlas of the human lung. We define the gene expression profiles and anatomical locations of 58 cell populations in the human lung, including 41 out of 45 previously known cell types and 14 previously unknown ones. This comprehensive molecular atlas identifies the biochemical functions of lung cells and the transcription factors and markers for making and monitoring them; defines the cell targets of circulating hormones and predicts local signalling interactions and immune cell homing; and identifies cell types that are directly affected by lung disease genes and respiratory viruses. By comparing human and mouse data, we identified 17 molecular cell types that have been gained or lost during lung evolution and others with substantially altered expression profiles, revealing extensive plasticity of cell types and cell-type-specific gene expression during organ evolution including expression switches between cell types. This atlas provides the molecular foundation for investigating how lung cell identities, functions and interactions are achieved in development and tissue engineering and altered in disease and evolution.


Asunto(s)
Células/clasificación , Células/metabolismo , Inmunidad , Pulmón/citología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcriptoma/genética , Anciano , Animales , Atlas como Asunto , Biomarcadores , Comunicación Celular , Células/inmunología , Quimiocinas/metabolismo , Células Endoteliales/metabolismo , Células Epiteliales/metabolismo , Femenino , Humanos , Pulmón/inmunología , Masculino , Ratones , Persona de Mediana Edad , Receptores Mensajeros de Linfocitos/metabolismo , Transducción de Señal , Células del Estroma/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(29): e2203032119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858312

RESUMEN

Colonial tunicates are marine organisms that possess multiple brains simultaneously during their colonial phase. While the cyclical processes of neurogenesis and neurodegeneration characterizing their life cycle have been documented previously, the cellular and molecular changes associated with such processes and their relationship with variation in brain morphology and individual (zooid) behavior throughout adult life remains unknown. Here, we introduce Botryllus schlosseri as an invertebrate model for neurogenesis, neural degeneration, and evolutionary neuroscience. Our analysis reveals that during the weekly colony budding (i.e., asexual reproduction), prior to programmed cell death and removal by phagocytes, decreases in the number of neurons in the adult brain are associated with reduced behavioral response and significant change in the expression of 73 mammalian homologous genes associated with neurodegenerative disease. Similarly, when comparing young colonies (1 to 2 y of age) to those reared in a laboratory for ∼20 y, we found that older colonies contained significantly fewer neurons and exhibited reduced behavioral response alongside changes in the expression of 148 such genes (35 of which were differentially expressed across both timescales). The existence of two distinct yet apparently related neurodegenerative pathways represents a novel platform to study the gene products governing the relationship between aging, neural regeneration and degeneration, and loss of nervous system function. Indeed, as a member of an evolutionary clade considered to be a sister group of vertebrates, this organism may be a fundamental resource in understanding how evolution has shaped these processes across phylogeny and obtaining mechanistic insight.


Asunto(s)
Evolución Biológica , Enfermedades Neurodegenerativas , Urocordados , Animales , Expresión Génica , Enfermedades Neurodegenerativas/genética , Reproducción Asexuada , Urocordados/genética
13.
Biochem Biophys Res Commun ; 693: 149355, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38096617

RESUMEN

Nardilysin (NRDC) is a multifunctional protein required for maintaining homeostasis in various cellular and tissue contexts. However, its role in hematopoietic stem cells (HSCs) remains unclear. Here, through the conditional deletion of NRDC in hematopoietic cells, we demonstrate that NRDC is required for HSCs expansion in vitro and the reconstitution of hematopoiesis in vivo after transplantation. We found NRDC-deficient HSCs lose their self-renewal ability and display a preferential bias to myeloid differentiation in response to replication stress. Transcriptome data analysis revealed the upregulation of heat shock response-related genes in NRDC-deficient HSCs. Additionally, we observed increased protein synthesis in cultured NRDC-deficient HSCs. Thus, loss of NRDC may cause the inability to control protein synthesis in response to replication induced protein stress, leading to the impaired HSC self-renewal ability. This highlights a novel model of action of NRDC specifically in HSCs.


Asunto(s)
Células Madre Hematopoyéticas , Metaloendopeptidasas , Células Madre Hematopoyéticas/metabolismo , Metaloendopeptidasas/metabolismo , Hematopoyesis/fisiología , Regulación hacia Arriba , Diferenciación Celular/genética
14.
Arterioscler Thromb Vasc Biol ; 43(7): 1262-1277, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37051932

RESUMEN

BACKGROUND: Peripheral vascular disease remains a leading cause of vascular morbidity and mortality worldwide despite advances in medical and surgical therapy. Besides traditional approaches, which can only restore blood flow to native arteries, an alternative approach is to enhance the growth of new vessels, thereby facilitating the physiological response to ischemia. METHODS: The ActinCreER/R26VT2/GK3 Rainbow reporter mouse was used for unbiased in vivo survey of injury-responsive vasculogenic clonal formation. Prospective isolation and transplantation were used to determine vessel-forming capacity of different populations. Single-cell RNA-sequencing was used to characterize distinct vessel-forming populations and their interactions. RESULTS: Two populations of distinct vascular stem/progenitor cells (VSPCs) were identified from adipose-derived mesenchymal stromal cells: VSPC1 is CD45-Ter119-Tie2+PDGFRa-CD31+CD105highSca1low, which gives rise to stunted vessels (incomplete tubular structures) in a transplant setting, and VSPC2 which is CD45-Ter119-Tie2+PDGFRa+CD31-CD105lowSca1high and forms stunted vessels and fat. Interestingly, cotransplantation of VSPC1 and VSPC2 is required to form functional vessels that improve perfusion in the mouse hindlimb ischemia model. Similarly, VSPC1 and VSPC2 populations isolated from human adipose tissue could rescue the ischemic condition in mice. CONCLUSIONS: These findings suggest that autologous cotransplantation of synergistic VSPCs from nonessential adipose tissue can promote neovascularization and represents a promising treatment for ischemic disease.


Asunto(s)
Células Madre Mesenquimatosas , Neovascularización Fisiológica , Ratones , Humanos , Animales , Neovascularización Fisiológica/fisiología , Tejido Adiposo , Neovascularización Patológica , Isquemia/terapia , Modelos Animales de Enfermedad , Miembro Posterior/irrigación sanguínea
15.
Nature ; 559(7714): 356-362, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29973725

RESUMEN

Arteries and veins are specified by antagonistic transcriptional programs. However, during development and regeneration, new arteries can arise from pre-existing veins through a poorly understood process of cell fate conversion. Here, using single-cell RNA sequencing and mouse genetics, we show that vein cells of the developing heart undergo an early cell fate switch to create a pre-artery population that subsequently builds coronary arteries. Vein cells underwent a gradual and simultaneous switch from venous to arterial fate before a subset of cells crossed a transcriptional threshold into the pre-artery state. Before the onset of coronary blood flow, pre-artery cells appeared in the immature vessel plexus, expressed mature artery markers, and decreased cell cycling. The vein-specifying transcription factor COUP-TF2 (also known as NR2F2) prevented plexus cells from overcoming the pre-artery threshold by inducing cell cycle genes. Thus, vein-derived coronary arteries are built by pre-artery cells that can differentiate independently of blood flow upon the release of inhibition mediated by COUP-TF2 and cell cycle factors.


Asunto(s)
Arterias/citología , Vasos Coronarios/citología , Análisis de la Célula Individual , Células Madre/citología , Células Madre/metabolismo , Venas/citología , Animales , Arterias/metabolismo , Factor de Transcripción COUP II/metabolismo , Ciclo Celular/genética , Diferenciación Celular , Linaje de la Célula , Vasos Coronarios/metabolismo , Femenino , Masculino , Ratones , Análisis de Secuencia de ARN , Venas/metabolismo
16.
Nature ; 564(7736): 425-429, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518860

RESUMEN

Haematopoiesis is an essential process that evolved in multicellular animals. At the heart of this process are haematopoietic stem cells (HSCs), which are multipotent and self-renewing, and generate the entire repertoire of blood and immune cells throughout an animal's life1. Although there have been comprehensive studies on self-renewal, differentiation, physiological regulation and niche occupation in vertebrate HSCs, relatively little is known about the evolutionary origin and niches of these cells. Here we describe the haematopoietic system of Botryllus schlosseri, a colonial tunicate that has a vasculature and circulating blood cells, and interesting stem-cell biology and immunity characteristics2-8. Self-recognition between genetically compatible B. schlosseri colonies leads to the formation of natural parabionts with shared circulation, whereas incompatible colonies reject each other3,4,7. Using flow cytometry, whole-transcriptome sequencing of defined cell populations and diverse functional assays, we identify HSCs, progenitors, immune effector cells and an HSC niche, and demonstrate that self-recognition inhibits allospecific cytotoxic reactions. Our results show that HSC and myeloid lineage immune cells emerged in a common ancestor of tunicates and vertebrates, and also suggest that haematopoietic bone marrow and the B. schlosseri endostyle niche evolved from a common origin.


Asunto(s)
Hematopoyesis , Sistema Hematopoyético/citología , Mamíferos/sangre , Filogenia , Urocordados/citología , Animales , Diferenciación Celular , Linaje de la Célula , Citotoxicidad Inmunológica , Femenino , Citometría de Flujo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Inmunidad Celular , Isoantígenos/inmunología , Masculino , Mamíferos/anatomía & histología , Células Mieloides/citología , Células Mieloides/inmunología , Fagocitosis/inmunología , Nicho de Células Madre , Transcriptoma/genética , Urocordados/anatomía & histología , Urocordados/genética , Urocordados/inmunología
17.
Environ Res ; 242: 117812, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042517

RESUMEN

Developing efficient and effective photocatalysts is essential for organic dyes and antibiotic degradation in wastewater. Ni-doped α-Fe2O3/g-C3N4 (NFGCN) photocatalysts were synthesised through a simple co-precipitation technique and used for the ciprofloxacin (CIP) and methylene blue (MB) degradation through photocatalysis. The XRD data indicated the crystallinity of the synthesised iron oxide and its composites with rhombohedral structures with the nature of high purity. The morphology of the NFGCN composite revealed the construction of Ni-doped α-Fe2O3 (NFO) nanoparticles onto the g-C3N4 (GCN) sheet surface along with the close interface that induced a Z-scheme heterojunction. The synthesised photocatalysts showed photocatalytic activity with good degradation efficiency of 82.1 % and 92.0 % for CIP and MB, respectively, within 120 min under solar light exposure. The improved photocatalytic degradation efficiency was attained owing to the synthesised composite's enhanced light absorption in the visible range. The narrow band gap energies and interaction between Ni-doped α-Fe2O3 and g-C3N4 displayed by these materials result in enhanced visible light absorption, effective charge carrier separation and transportation to the pollutants. CIP degradation pathways were investigated utilising the LC-MS analysis. NFGCN composites showed good recyclability (5 cycles), magnetic retrievability, and stability for degrading organic and emerging pollutants from wastewater through photocatalysis.


Asunto(s)
Contaminantes Ambientales , Compuestos Férricos , Grafito , Nanocompuestos , Compuestos de Nitrógeno , Ciprofloxacina/química , Aguas Residuales , Luz , Nanocompuestos/química
18.
Nature ; 545(7655): 495-499, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28514441

RESUMEN

Programmed cell death protein 1 (PD-1) is an immune checkpoint receptor that is upregulated on activated T cells for the induction of immune tolerance. Tumour cells frequently overexpress the ligand for PD-1, programmed cell death ligand 1 (PD-L1), facilitating their escape from the immune system. Monoclonal antibodies that block the interaction between PD-1 and PD-L1, by binding to either the ligand or receptor, have shown notable clinical efficacy in patients with a variety of cancers, including melanoma, colorectal cancer, non-small-cell lung cancer and Hodgkin's lymphoma. Although it is well established that PD-1-PD-L1 blockade activates T cells, little is known about the role that this pathway may have in tumour-associated macrophages (TAMs). Here we show that both mouse and human TAMs express PD-1. TAM PD-1 expression increases over time in mouse models of cancer and with increasing disease stage in primary human cancers. TAM PD-1 expression correlates negatively with phagocytic potency against tumour cells, and blockade of PD-1-PD-L1 in vivo increases macrophage phagocytosis, reduces tumour growth and lengthens the survival of mice in mouse models of cancer in a macrophage-dependent fashion. This suggests that PD-1-PD-L1 therapies may also function through a direct effect on macrophages, with substantial implications for the treatment of cancer with these agents.


Asunto(s)
Neoplasias del Colon/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Fagocitosis , Receptor de Muerte Celular Programada 1/metabolismo , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Estadificación de Neoplasias , Fagocitosis/efectos de los fármacos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Phys Rev Lett ; 128(8): 081803, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35275651

RESUMEN

One of the outstanding problems in physics is to explain the baryon-antibaryon asymmetry observed in nature. According to the well-known Sakharov criterion for explaining the observed asymmetry, it is essential that CP violation exist. Even though CP violation has been observed in meson decays and is an integral part of the standard model (SM), measurements in meson decays indicate that CP violation in the SM is insufficient to explain the observed baryon-antibaryon asymmetry. The SM predicts the existence of yet to be observed CP violation in baryon decays. A critical test of the SM requires that CP violation be measured in baryon decays as well, in order to verify that it agrees with the measurement using meson decays. In this Letter we propose a new method to measure the CP violating phase in b baryons, using interference arising implicitly due to Bose symmetry considerations of the decaying amplitudes.

20.
Nature ; 530(7589): 223-7, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26863982

RESUMEN

Haematopoietic stem cells (HSCs) are arguably the most extensively characterized tissue stem cells. Since the identification of HSCs by prospective isolation, complex multi-parameter flow cytometric isolation of phenotypic subsets has facilitated studies on many aspects of HSC biology, including self-renewal, differentiation, ageing, niche, and diversity. Here we demonstrate by unbiased multi-step screening, identification of a single gene, homeobox B5 (Hoxb5, also known as Hox-2.1), with expression in the bone marrow that is limited to long-term (LT)-HSCs in mice. Using a mouse single-colour tri-mCherry reporter driven by endogenous Hoxb5 regulation, we show that only the Hoxb5(+) HSCs exhibit long-term reconstitution capacity after transplantation in primary transplant recipients and, notably, in secondary recipients. Only 7-35% of various previously defined immunophenotypic HSCs are LT-HSCs. Finally, by in situ imaging of mouse bone marrow, we show that >94% of LT-HSCs (Hoxb5(+)) are directly attached to VE-cadherin(+) cells, implicating the perivascular space as a near-homogenous location of LT-HSCs.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/metabolismo , Nicho de Células Madre , Animales , Antígenos CD/metabolismo , Biomarcadores/análisis , Médula Ósea/metabolismo , Cadherinas/metabolismo , Autorrenovación de las Células , Regulación de la Expresión Génica , Genes Reporteros/genética , Trasplante de Células Madre Hematopoyéticas , Proteínas de Homeodominio/genética , Inmunofenotipificación , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA