RESUMEN
Epigenetic regulators are often hijacked by cancer cells to sustain malignant phenotypes. How cells repurpose key regulators of cell identity as tumour-promoting factors is unclear. The antithetic role of the Polycomb component EZH2 in normal brain and glioma provides a paradigm to dissect how wild-type chromatin modifiers gain a pathological function in cancer. Here, we show that oncogenic signalling induces redistribution of EZH2 across the genome, and through misregulation of homeotic genes corrupts the identity of neural cells. Characterisation of EZH2 targets in de novo transformed cells, combined with analysis of glioma patient datasets and cell lines, reveals that acquisition of tumorigenic potential is accompanied by a transcriptional switch involving de-repression of spinal cord-specifying HOX genes and concomitant silencing of the empty spiracles homologue EMX2, a critical regulator of neurogenesis in the forebrain. Maintenance of tumorigenic potential by glioblastoma cells requires EMX2 repression, since forced EMX2 expression prevents tumour formation. Thus, by redistributing EZH2 across the genome, cancer cells subvert developmental transcriptional programmes that specify normal cell identity and remove physiological breaks that restrain cell proliferation.
Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Glioma/patología , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Cromatina/metabolismo , Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica , Genes Homeobox , Glioma/genética , Humanos , Masculino , Ratones Endogámicos NOD , Modelos Biológicos , Fenotipo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción GenéticaRESUMEN
PURPOSE: Advanced methodologies for visualizing novel tissue contrast are essential for phenotyping the ever-increasing number of mutant mouse embryos being generated. Although diffusion microscopic MRI (µMRI) has been used to phenotype embryos, widespread routine use is limited by extended scanning times, and there is no established experimental procedure ensuring optimal data acquisition. METHODS: We developed two protocols for designing experimental procedures for diffusion µMRI of mouse embryos, which take into account the effect of embryo preparation and pulse sequence parameters on resulting data. We applied our protocols to an investigation of the splotch mouse model as an example implementation. RESULTS: The protocols provide DTI data in 24 min per direction at 75 µm isotropic using a three-dimensional fast spin-echo sequence, enabling preliminary imaging in 3 h (6 directions plus one unweighted measurement), or detailed imaging in 9 h (42 directions plus six unweighted measurements). Application to the splotch model enabled assessment of spinal cord pathology. CONCLUSION: We present guidelines for designing diffusion µMRI experiments, which may be adapted for different studies and research facilities. As they are suitable for routine use and may be readily implemented, we hope they will be adopted by the phenotyping community.
Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Embrión de Mamíferos/citología , Imagen por Resonancia Magnética/métodos , Microscopía/métodos , Médula Espinal/citología , Médula Espinal/embriología , Animales , Aumento de la Imagen/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/genética , Diagnóstico Prenatal/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Manejo de Especímenes/métodosRESUMEN
PURPOSE: Myocardial blood flow (MBF) is an important indicator of cardiac tissue health, which can be measured using arterial spin labeling. This study aimed to develop a new method of MBF quantification with blood pool magnetization measurement ("bpMBF quantification") that allows multislice cardiac arterial spin labeling. THEORY AND METHODS: A multislice segmented ECG-gated Look-Locker T1 mapping sequence was validated. Quantification of multislice arterial spin labeling is not straightforward due to the large volume of blood inverted following slice-selective inversion. For bpMBF quantification, a direct measurement of the left-ventricle blood pool magnetization was used to approximate the blood input function into the Bloch equations. Simulations and in vivo measurements in the mouse heart were performed to evaluate the bpMBF method. RESULTS: Measurements indicated that blood pool magnetization requires â¼3 s to return to equilibrium following slice-selective inversion. Simulation and in vivo results show that bpMBF quantification is robust to variations in slice-selective thickness and therefore applicable to multislice acquisition, whereas traditional methods are likely to underestimate multislice perfusion. In vivo, single and multislice perfusion values matched well when quantified using bpMBF. CONCLUSION: The first multislice cardiac arterial spin labeling technique has been presented, which can be used for accurate perfusion measurements in studies of cardiac disease.
Asunto(s)
Circulación Coronaria/fisiología , Vasos Coronarios/fisiología , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Imagen por Resonancia Cinemagnética/métodos , Imagen de Perfusión Miocárdica/métodos , Algoritmos , Animales , Vasos Coronarios/anatomía & histología , Ratones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Marcadores de SpinRESUMEN
PURPOSE: Worldwide efforts to understand developmental processes demand new high-resolution 3D imaging methods to detect the consequences of gene function in embryo development and diseases. Encouragingly, recent studies have shown that MRI contrast agents can highlight specific tissue structures in ex vivo adult mouse brains. MR imaging of mouse embryos is currently limited by a lack of tissue staining capabilities that would provide the flexibility and specificity offered by histological stains conventionally used for mouse embryo phenotyping. METHODS: The MRI staining properties of two readily available contrast agents, Mn-DPDP and Gd-DTPA, were investigated in mid-gestation mouse embryos. RESULTS: Brain tissue substructures not normally visible using MRI were detected. Mn-DPDP and Gd-DTPA provided spatially distinct tissue staining patterns. An initial assessment indicated that these agents utilized independent contrast enhancement mechanisms. Mn-DPDP was identified as a potential MRI contrast agent for enhancement of mouse embryonic cellular density and enabled identification of regions containing populations of neural stem and progenitor cells within the intact embryo brain. CONCLUSIONS: Different contrast agents may be used to provide tissue-specific contrast enhancement, suggesting that a host of specialized MRI stains may be available for probing the developing mouse brain and investigating developmental and disease mechanisms.
Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/embriología , Ácido Edético/análogos & derivados , Gadolinio DTPA , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/veterinaria , Fosfato de Piridoxal/análogos & derivados , Animales , Medios de Contraste , Diagnóstico Diferencial , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Glioblastoma multiforme (GBM) is the most common and aggressive form of primary brain cancer, for which effective therapies are urgently needed. Chimeric antigen receptor (CAR)-based immunotherapy represents a promising therapeutic approach, but it is often impeded by highly immunosuppressive tumor microenvironments (TME). Here, in an immunocompetent, orthotopic GBM mouse model, we show that CAR-T cells targeting tumor-specific epidermal growth factor receptor variant III (EGFRvIII) alone fail to control fully established tumors but, when combined with a single, locally delivered dose of IL-12, achieve durable anti-tumor responses. IL-12 not only boosts cytotoxicity of CAR-T cells, but also reshapes the TME, driving increased infiltration of proinflammatory CD4+ T cells, decreased numbers of regulatory T cells (Treg), and activation of the myeloid compartment. Importantly, the immunotherapy-enabling benefits of IL-12 are achieved with minimal systemic effects. Our findings thus show that local delivery of IL-12 may be an effective adjuvant for CAR-T cell therapy for GBM.
Asunto(s)
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Inmunoconjugados/administración & dosificación , Inmunoterapia Adoptiva/métodos , Interleucina-12/administración & dosificación , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/inmunología , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Receptores ErbB/inmunología , Femenino , Glioblastoma/diagnóstico por imagen , Glioblastoma/inmunología , Glioblastoma/patología , Humanos , Inmunoconjugados/inmunología , Fragmentos Fc de Inmunoglobulinas/administración & dosificación , Fragmentos Fc de Inmunoglobulinas/inmunología , Inyecciones Intralesiones/métodos , Interleucina-12/inmunología , Imagen por Resonancia Magnética Intervencional , Ratones , Receptores Quiméricos de Antígenos/inmunología , Anticuerpos de Cadena Única/administración & dosificación , Anticuerpos de Cadena Única/inmunología , Linfocitos T Reguladores/inmunología , Microambiente Tumoral/inmunologíaRESUMEN
Several distinct fluid flow phenomena occur in solid tumors, including intravascular blood flow and interstitial convection. Interstitial fluid pressure is often raised in solid tumors, which can limit drug delivery. To probe low-velocity flow in tumors resulting from raised interstitial fluid pressure, we developed a novel MRI technique named convection-MRI, which uses a phase-contrast acquisition with a dual-inversion vascular nulling preparation to separate intra- and extravascular flow. Here, we report the results of experiments in flow phantoms, numerical simulations, and tumor xenograft models to investigate the technical feasibility of convection-MRI. We observed a significant correlation between estimates of effective fluid pressure from convection-MRI with gold-standard, invasive measurements of interstitial fluid pressure in mouse models of human colorectal carcinoma. Our results show how convection-MRI can provide insights into the growth and responsiveness to vascular-targeting therapy in colorectal cancers.Significance: A noninvasive method for measuring low-velocity fluid flow caused by raised fluid pressure can be used to assess changes caused by therapy. Cancer Res; 78(7); 1859-72. ©2018 AACR.
Asunto(s)
Neoplasias Colorrectales/irrigación sanguínea , Líquido Extracelular/fisiología , Hidrodinámica , Imagen por Resonancia Magnética/métodos , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/patología , Sistemas de Liberación de Medicamentos , Humanos , Ratones , Ratones Desnudos , Modelos Biológicos , Neovascularización Patológica/patología , Fantasmas de ImagenRESUMEN
Combining datasets with a model of the underlying physics prior to mapping of tissue provides a novel approach improving the estimation of parameters. We demonstrate this approach by merging near infrared diffuse optical signal data with diffusion NMR data to inform a model describing the microstructure of a sample. The study is conducted on a homogeneous emulsion of oil in a dispersion medium of water and proteins. The use of a protein based background, rich in collagen, introduces a similarity to real tissues compared to other models such as intralipids. The sample is investigated with the two modalities separately. Then, the two datasets are used to inform a combined model, and to estimate the size of the microstructural elements and the volume fraction. The combined model fits the microstructural properties by minimizing the difference between experimental and modelled data. The experimental results are validated with confocal laser scanning microscopy. The final results demonstrate that the combined model provides improved estimates of microstructural parameters compared to either individual model alone.
Asunto(s)
Microtecnología/métodos , Fenómenos Ópticos , Difusión , Espectroscopía de Resonancia Magnética , Cadenas de Markov , Método de Montecarlo , PorosidadRESUMEN
OBJECTIVES: To use primed infusions of the magnetic resonance imaging (MRI) contrast agent Gd.DTPA (Magnevist), to achieve an equilibrium between blood and tissue (eqMRI). This may increase tumor Gd concentrations as a novel cancer imaging methodology for the enhancement of small tumor nodules within the low signal-to-noise background of the lung. METHODS: A primed infusion with a delay before equilibrium (eqMRI) of the Gd(III) chelator Gd.DTPA, via the intraperitoneal route, was used to evaluate gadolinium tumor enhancement as a function of a bolus injection, which is applied routinely in the clinic, compared to gadolinium maintained at equilibrium. A double gated (respiration and cardiac) spin-echo sequence at 9.4T was used to evaluate whole lungs pre contrast and then at 15 (representative of bolus enhancement), 25 and 35 minutes (representative of eqMRI). This was carried out in two lung metastasis models representative of high and low tumor cell seeding. Lungs containing discrete tumor nodes where inflation fixed and taken for haematoxylin and eosin staining as well as CD34 staining for correlation to MRI. RESULTS: We demonstrate that sustained Gd enhancement, afforded by Gd equilibrium, increases the detection of pulmonary metastases compared to bolus enhancement and those tumors which enhance at equilibrium are sub-millimetre in size (<0.7 mm(2)) with a similar morphology to early bronchoalveolar cell carcinomas. CONCLUSION: As Gd-chelates are routinely used in the clinic for detecting tumors by MRI, this methodology is readily transferable to the clinic and advances MRI as a methodology for the detection of small pulmonary tumors.