Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biomed Inform ; 120: 103844, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34153432

RESUMEN

The rapid evolution of the COVID-19 pandemic has underscored the need to quickly disseminate the latest clinical knowledge during a public-health emergency. One surprisingly effective platform for healthcare professionals (HCPs) to share knowledge and experiences from the front lines has been social media (for example, the "#medtwitter" community on Twitter). However, identifying clinically-relevant content in social media without manual labeling is a challenge because of the sheer volume of irrelevant data. We present an unsupervised, iterative approach to mine clinically relevant information from social media data, which begins by heuristically filtering for HCP-authored texts and incorporates topic modeling and concept extraction with MetaMap. This approach identifies granular topics and tweets with high clinical relevance from a set of about 52 million COVID-19-related tweets from January to mid-June 2020. We also show that because the technique does not require manual labeling, it can be used to identify emerging topics on a week-to-week basis. Our method can aid in future public-health emergencies by facilitating knowledge transfer among healthcare workers in a rapidly-changing information environment, and by providing an efficient and unsupervised way of highlighting potential areas for clinical research.


Asunto(s)
COVID-19 , Medios de Comunicación Sociales , Humanos , Almacenamiento y Recuperación de la Información , Pandemias , SARS-CoV-2
2.
Protein Sci ; 31(6): e4322, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35634780

RESUMEN

Despite advances in protein engineering, the de novo design of small proteins or peptides that bind to a desired target remains a difficult task. Most computational methods search for binder structures in a library of candidate scaffolds, which can lead to designs with poor target complementarity and low success rates. Instead of choosing from pre-defined scaffolds, we propose that custom peptide structures can be constructed to complement a target surface. Our method mines tertiary motifs (TERMs) from known structures to identify surface-complementing fragments or "seeds." We combine seeds that satisfy geometric overlap criteria to generate peptide backbones and score the backbones to identify the most likely binding structures. We found that TERM-based seeds can describe known binding structures with high resolution: the vast majority of peptide binders from 486 peptide-protein complexes can be covered by seeds generated from single-chain structures. Furthermore, we demonstrate that known peptide structures can be reconstructed with high accuracy from peptide-covering seeds. As a proof of concept, we used our method to design 100 peptide binders of TRAF6, seven of which were predicted by Rosetta to form higher-quality interfaces than a native binder. The designed peptides interact with distinct sites on TRAF6, including the native peptide-binding site. These results demonstrate that known peptide-binding structures can be constructed from TERMs in single-chain structures and suggest that TERM information can be applied to efficiently design novel target-complementing binders.


Asunto(s)
Péptidos , Factor 6 Asociado a Receptor de TNF , Sitios de Unión , Péptidos/química , Unión Proteica , Ingeniería de Proteínas , Factor 6 Asociado a Receptor de TNF/metabolismo
3.
Elife ; 112022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35076015

RESUMEN

The human proteome is replete with short linear motifs (SLiMs) of four to six residues that are critical for protein-protein interactions, yet the importance of the sequence surrounding such motifs is underexplored. We devised a proteomic screen to examine the influence of SLiM sequence context on protein-protein interactions. Focusing on the EVH1 domain of human ENAH, an actin regulator that is highly expressed in invasive cancers, we screened 36-residue proteome-derived peptides and discovered new interaction partners of ENAH and diverse mechanisms by which context influences binding. A pocket on the ENAH EVH1 domain that has diverged from other Ena/VASP paralogs recognizes extended SLiMs and favors motif-flanking proline residues. Many high-affinity ENAH binders that contain two proline-rich SLiMs use a noncanonical site on the EVH1 domain for binding and display a thermodynamic signature consistent with the two-motif chain engaging a single domain. We also found that photoreceptor cilium actin regulator (PCARE) uses an extended 23-residue region to obtain a higher affinity than any known ENAH EVH1-binding motif. Our screen provides a way to uncover the effects of proteomic context on motif-mediated binding, revealing diverse mechanisms of control over EVH1 interactions and establishing that SLiMs can't be fully understood outside of their native context.


Asunto(s)
Actinas/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Proteínas de Microfilamentos/metabolismo , Prolina/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células HEK293 , Humanos , Proteómica
4.
ArXiv ; 2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33594339

RESUMEN

The rapid evolution of the COVID-19 pandemic has underscored the need to quickly disseminate the latest clinical knowledge during a public-health emergency. One surprisingly effective platform for healthcare professionals (HCPs) to share knowledge and experiences from the front lines has been social media (for example, the "#medtwitter" community on Twitter). However, identifying clinically-relevant content in social media without manual labeling is a challenge because of the sheer volume of irrelevant data. We present an unsupervised, iterative approach to mine clinically relevant information from social media data, which begins by heuristically filtering for HCP-authored texts and incorporates topic modeling and concept extraction with MetaMap. This approach identifies granular topics and tweets with high clinical relevance from a set of about 52 million COVID-19-related tweets from January to mid-June 2020. We also show that because the technique does not require manual labeling, it can be used to identify emerging topics on a week-to-week basis. Our method can aid in future public-health emergencies by facilitating knowledge transfer among healthcare workers in a rapidly-changing information environment, and by providing an efficient and unsupervised way of highlighting potential areas for clinical research.

5.
Proc Conf ; 2021: 106-115, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34151319

RESUMEN

Embeddings of words and concepts capture syntactic and semantic regularities of language; however, they have seen limited use as tools to study characteristics of different corpora and how they relate to one another. We introduce TextEssence, an interactive system designed to enable comparative analysis of corpora using embeddings. TextEssence includes visual, neighbor-based, and similarity-based modes of embedding analysis in a lightweight, web-based interface. We further propose a new measure of embedding confidence based on nearest neighborhood overlap, to assist in identifying high-quality embeddings for corpus analysis. A case study on COVID-19 scientific literature illustrates the utility of the system. TextEssence can be found at https://textessence.github.io.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA