Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 311(4): C616-C629, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27488660

RESUMEN

It is often assumed that mechanical factors are important for effects of exercise on muscle, but during voluntary training and most experimental conditions the effects could solely be attributed to differences in electrical activity, and direct evidence for a mechanosensory pathway has been scarce. We here show that, in rat muscles stimulated in vivo under deep anesthesia with identical electrical activity patterns, isometric contractions induced twofold more hypertrophy than contractions with 50-60% of the isometric force. The number of myonuclei and the RNA levels of myogenin and myogenic regulatory factor 4 were increased with high load, suggesting that activation of satellite cells is mechano dependent. On the other hand, training induced a major shift in fiber type distribution from type 2b to 2x that was load independent, indicating that the electrical signaling rather than mechanosignaling controls fiber type. RAC-α serine/threonine-protein kinase (Akt) and ribosomal protein S6 kinase ß-1 (S6K1) were not significantly differentially activated by load, suggesting that the differences in mechanical factors were not important for activating the Akt/mammalian target of rapamycin/S6K1 pathway. The transmembrane molecule syndecan-4 implied in overload hypertrophy in cardiac muscle was not load dependent, suggesting that mechanosignaling in skeletal muscle is different.


Asunto(s)
Hipertrofia/fisiopatología , Músculo Esquelético/fisiología , Animales , Contracción Isométrica/fisiología , Músculo Esquelético/metabolismo , Miogenina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo
2.
J Physiol ; 589(Pt 24): 6139-55, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21946846

RESUMEN

Sarcoplasmic reticulum Ca(2+) ATPases (SERCAs) play a major role in muscle contractility by pumping Ca(2+) from the cytosol into the sarcoplasmic reticulum (SR) Ca(2+) store, allowing muscle relaxation and refilling of the SR with releasable Ca(2+). Decreased SERCA function has been shown to result in impaired muscle function and disease in human and animal models. In this study, we present a new mouse model with targeted disruption of the Serca2 gene in skeletal muscle (skKO) to investigate the functional consequences of reduced SERCA2 expression in skeletal muscle. SkKO mice were viable and basic muscle structure was intact. SERCA2 abundance was reduced in multiple muscles, and by as much as 95% in soleus muscle, having the highest content of slow-twitch fibres (40%). The Ca(2+) uptake rate was significantly reduced in SR vesicles in total homogenates. We did not find any compensatory increase in SERCA1 or SERCA3 abundance, or altered expression of several other Ca(2+)-handling proteins. Ultrastructural analysis revealed generally well-preserved muscle morphology, but a reduced volume of the longitudinal SR. In contracting soleus muscle in vitro preparations, skKO muscles were able to fully relax, but with a significantly slowed relaxation time compared to controls. Surprisingly, the maximal force and contraction rate were preserved, suggesting that skKO slow-twitch fibres may be able to contribute to the total muscle force despite loss of SERCA2 protein. Thus it is possible that SERCA-independent mechanisms can contribute to muscle contractile function.


Asunto(s)
Relajación Muscular/fisiología , Músculo Esquelético/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología , Animales , Calcio/metabolismo , Ratones , Ratones Noqueados , Contracción Muscular/fisiología , Fibras Musculares de Contracción Lenta/fisiología , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/deficiencia , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
3.
J Appl Physiol (1985) ; 109(6): 1749-55, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20864565

RESUMEN

In the heart, function of the sarco(endo)plasmic Ca(2+)-ATPase (SERCA2) is closely linked to contractility, cardiac function, and aerobic fitness. SERCA2 function can be increased by high-intensity interval training, whereas reduced SERCA2 abundance is associated with impaired cardiac function. The working hypothesis was, therefore, that exercise training before cardiomyocyte-specific disruption of the Serca2 gene would delay the onset of cardiac dysfunction in mice. Before Serca2 gene disruption by tamoxifen, untreated SERCA2 knockout mice (Serca2(flox/flox) Tg-αMHC-MerCreMer; S2KO), and SERCA2 FF control mice (Serca2(flox/flox), S2FF) were exercise trained by high-intensity interval treadmill running for 6 wk. Both genotypes responded to training, with comparable increases in maximal oxygen uptake (Vo(2max); 17%), left ventricle weight (15%), and maximal running speed (40%). After exercise training, cardiac-specific Serca2 gene disruption was induced in both exercise trained and sedentary S2KO mice. In trained S2KO, cardiac function decreased less rapidly than in sedentary S2KO. Vo(2max) remained higher in trained S2KO the first 15 days after gene disruption. Six weeks after Serca2 disruption, cardiac output was higher in trained compared with sedentary S2KO mice. An exercise-training program attenuates the decline in cardiac performance induced by acute cardiac Serca2 gene disruption, indicating that mechanisms other than SERCA2 contribute to the favorable effect of exercise training.


Asunto(s)
Cardiomiopatías/prevención & control , Insuficiencia Cardíaca/prevención & control , Miocardio/enzimología , Esfuerzo Físico , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/deficiencia , Animales , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/enzimología , Cardiomiopatías/genética , Cardiomiopatías/fisiopatología , Genotipo , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca , Masculino , Ratones , Ratones Noqueados , Contracción Miocárdica , Fenotipo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Factores de Tiempo , Ultrasonografía , Función Ventricular Izquierda , Presión Ventricular
4.
Cell Calcium ; 46(3): 219-25, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19692123

RESUMEN

Sarco(endo)plasmic reticulum calcium ATPases (SERCA) are cellular pumps that transport Ca(2+) into the sarcoplasmic reticulum (SR). Serca2 is the most widely expressed gene family member. The very early embryonic lethality of Serca2(null) mouse embryos has precluded further evaluation of loss of Serca2 function in the context of organ physiology. We have generated mice carrying a conditional Serca2(flox) allele which allows disruption of the Serca2 gene in an organ-specific and/or inducible manner. The model was tested by mating Serca2(flox) mice with MLC-2v(wt/Cre) mice and with alphaMHC-Cre transgenic mice. In heterozygous Serca2(wt/flox)MLC-2v(wt/Cre) mice, the expression of SERCA2a and SERCA2b proteins were reduced in the heart and slow skeletal muscle, in accordance with the expression pattern of the MLC-2v gene. In Serca2(flox/flox) Tg(alphaMHC-Cre) embryos with early homozygous cardiac Serca2 disruption, normal embryonic development and yolk sac circulation was maintained up to at least embryonic stage E10.5. The Serca2(flox) mouse is the first murine conditional gene disruption model for the SERCA family of Ca(2+) ATPases, and should be a powerful tool for investigating specific physiological roles of SERCA2 function in a range of tissues and organs in vivo both in adult and embryonic stages.


Asunto(s)
ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Alelos , Animales , Corazón/embriología , Corazón/crecimiento & desarrollo , Heterocigoto , Ratones , Ratones Transgénicos , Modelos Animales , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA