Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Microsc ; 270(3): 326-334, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29393521

RESUMEN

Structured illumination microscopy (SIM) for the imaging of alpha particle tracks in fluorescent nuclear track detectors (FNTD) was evaluated and compared to confocal laser scanning microscopy (CLSM). FNTDs were irradiated with an external alpha source and imaged using both methodologies. SIM imaging resulted in improved resolution, without increase in scan time. Alpha particle energy estimation based on the track length, direction and intensity produced results in good agreement with the expected alpha particle energy distribution. A pronounced difference was seen in the spatial scattering of alpha particles in the detectors, where SIM showed an almost 50% reduction compared to CLSM. The improved resolution of SIM allows for more detailed studies of the tracks induced by ionising particles. The combination of SIM and FNTDs for alpha radiation paves the way for affordable and fast alpha spectroscopy and dosimetry.

2.
Cereb Cortex ; 27(10): 5001-5013, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28922832

RESUMEN

Myelination, the insulating ensheathment of axons by oligodendrocytes, is thought to both optimize signal propagation and provide metabolic support. Despite the well-established physiological importance of myelination to neuronal function, relatively little is known about the myelination of GABAergic interneurons in the cerebral cortex. Here, we report that a large fraction of myelin in mouse cerebral cortex ensheaths GABAergic interneurons, reaching up to 80% in hippocampal subregions. Moreover, we find that a very high proportion of neocortical and hippocampal parvalbumin (PV) interneurons exhibit axonal myelination. Using a combination of intracellular recordings and biocytin labeling of ex vivo human neocortex, we also confirm that axons of fast-spiking PV interneurons are extensively myelinated in the human brain. PV interneuron myelination in both mice and humans exhibits a stereotyped topography with a bias towards proximal axonal segments and relatively short internodes (~27 µm) interspersed with branch points. Interestingly, myelin-deficient Shiverer mice exhibit an increased density and more proximal location of en passant boutons, suggesting that myelination might function in part to regulate synapse formation along PV interneuron axons. Taken together, fast-spiking interneuron myelination is likely to have broad implications for cerebral cortex function in health and disease.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Cerebral/fisiología , Interneuronas/fisiología , Neocórtex/fisiología , Parvalbúminas/fisiología , Animales , Humanos , Ratones Transgénicos , Vaina de Mielina/metabolismo , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA