Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31953342

RESUMEN

The upper green layer of the chlorophototrophic microbial mats associated with the alkaline siliceous hot springs of Yellowstone National Park consists of oxygenic cyanobacteria (Synechococcus spp.), anoxygenic Roseiflexus spp., and several other anoxygenic chlorophototrophs. Synechococcus spp. are believed to be the main fixers of inorganic carbon (Ci), but some evidence suggests that Roseiflexus spp. also contribute to inorganic carbon fixation during low-light, anoxic morning periods. Contributions of other phototrophic taxa have not been investigated. In order to follow the pathway of Ci incorporation into different taxa, mat samples were incubated with [13C]bicarbonate for 3 h during the early-morning, low-light anoxic period. Extracted proteins were treated with trypsin and analyzed by mass spectrometry, leading to peptide identifications and peptide isotopic profile signatures containing evidence of 13C label incorporation. A total of 25,483 peptides, corresponding to 7,221 proteins, were identified from spectral features and associated with mat taxa by comparison to metagenomic assembly sequences. A total of 1,417 peptides, derived from 720 proteins, were detectably labeled with 13C. Most 13C-labeled peptides were derived from proteins of Synechococcus spp. and Roseiflexus spp. Chaperones and proteins of carbohydrate metabolism were most abundantly labeled. Proteins involved in photosynthesis, Ci fixation, and N2 fixation were also labeled in Synechococcus spp. Importantly, most proteins of the 3-hydroxypropionate bi-cycle for Ci fixation in Roseiflexus spp. were labeled, establishing that members of this taxocene contribute to Ci fixation. Other taxa showed much lower [13C]bicarbonate incorporation.IMPORTANCE Yellowstone hot spring mats have been studied as natural models for understanding microbial community ecology and as modern analogs of stromatolites, the earliest community fossils on Earth. Stable-isotope probing of proteins (Pro-SIP) permitted short-term interrogation of the taxa that are involved in the important process of light-driven Ci fixation in this highly active community and will be useful in linking other metabolic processes to mat taxa. Here, evidence is presented that Roseiflexus spp., which use the 3-hydroxypropionate bi-cycle, are active in Ci fixation. Because this pathway imparts a lower degree of selection of isotopically heavy Ci than does the Calvin-Benson-Bassham cycle, the results suggest a mechanism to explain why the natural abundance of 13C in mat biomass is greater than expected if only the latter pathway were involved. Understanding how mat community members influence the 13C/12C ratios of mat biomass will help geochemists interpret the 13C/12C ratios of organic carbon in the fossil record.


Asunto(s)
Compuestos Inorgánicos de Carbono/metabolismo , Chloroflexi/metabolismo , Manantiales de Aguas Termales/microbiología , Microbiota , Synechococcus/metabolismo
2.
Int J Mass Spectrom ; 427: 91-99, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29706793

RESUMEN

The mass accuracy and peak intensity of ions detected by mass spectrometry (MS) measurements are essential to facilitate compound identification and quantitation. However, high concentration species can yield erroneous results if their ion intensities reach beyond the limits of the detection system, leading to distorted and non-ideal detector response (e.g. saturation), and largely precluding the calculation of accurate m/z and intensity values. Here we present an open source computational method to correct peaks above a defined intensity (saturated) threshold determined by the MS instrumentation such as the analog-to-digital converters or time-to-digital converters used in conjunction with time-of-flight MS. In this method, the isotopic envelope for each observed ion above the saturation threshold is compared to its expected theoretical isotopic distribution. The most intense isotopic peak for which saturation does not occur is then utilized to re-calculate the precursor m/z and correct the intensity, resulting in both higher mass accuracy and greater dynamic range. The benefits of this approach were evaluated with proteomic and lipidomic datasets of varying complexities. After correcting the high concentration species, reduced mass errors and enhanced dynamic range were observed for both simple and complex omic samples. Specifically, the mass error dropped by more than 50% in most cases for highly saturated species and dynamic range increased by 1-2 orders of magnitude for peptides in a blood serum sample.

3.
Mol Cell Proteomics ; 13(4): 1119-27, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24403597

RESUMEN

Rapid diagnosis of disease states using less invasive, safer, and more clinically acceptable approaches than presently employed is a crucial direction for the field of medicine. While MS-based proteomics approaches have attempted to meet these objectives, challenges such as the enormous dynamic range of protein concentrations in clinically relevant biofluid samples coupled with the need to address human biodiversity have slowed their employment. Herein, we report on the use of a new instrumental platform that addresses these challenges by coupling technical advances in rapid gas phase multiplexed ion mobility spectrometry separations with liquid chromatography and MS to dramatically increase measurement sensitivity and throughput, further enabling future high throughput MS-based clinical applications. An initial application of the liquid chromatography--ion mobility spectrometry-MS platform analyzing blood serum samples from 60 postliver transplant patients with recurrent fibrosis progression and 60 nontransplant patients illustrates its potential utility for disease characterization.


Asunto(s)
Cirrosis Hepática/sangre , Cirrosis Hepática/complicaciones , Proteoma/metabolismo , Proteómica/métodos , Cromatografía Liquida , Humanos , Iones/química , Cirrosis Hepática/metabolismo , Trasplante de Hígado , Espectrometría de Masas , Proteómica/instrumentación
4.
J Proteome Res ; 14(9): 4029-38, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26147956

RESUMEN

Ubiquitination is a key protein post-translational modification that regulates many important cellular pathways and whose levels are regulated by equilibrium between the activities of ubiquitin ligases and deubiquitinases. Here, we present a method to identify specific deubiquitinase substrates based on treatment of cell lysates with recombinant enzymes, immunoaffinity purification, and global quantitative proteomic analysis. As a model system to identify substrates, we used a virulence-related deubiquitinase, SseL, secreted by Salmonella enterica serovar Typhimurium into host cells. Using this approach, two SseL substrates were identified in the RAW 264.7 murine macrophage-like cell line, S100A6 and heterogeneous nuclear ribonuclear protein K, in addition to the previously reported K63-linked ubiquitin chains. These substrates were further validated by a combination of enzymatic and binding assays. This method can be used for the systematic identification of substrates of deubiquitinases from other organisms and applied to study their functions in physiology and disease.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteómica/métodos , Salmonella typhimurium/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Proteínas Bacterianas/química , Línea Celular , Inmunoensayo , Espectrometría de Masas , Ratones , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteasas Ubiquitina-Específicas/química , Ubiquitinación
5.
J Proteome Res ; 14(1): 422-33, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25350482

RESUMEN

Aberrant degradation of proteins is associated with many pathological states, including cancers. Mass spectrometric analysis of tumor peptidomes, the intracellular and intercellular products of protein degradation, has the potential to provide biological insights on proteolytic processing in cancer. However, attempts to use the information on these smaller protein degradation products from tumors for biomarker discovery and cancer biology studies have been fairly limited to date, largely due to the lack of effective approaches for robust peptidomics identification and quantification and the prevalence of confounding factors and biases associated with sample handling and processing. Herein, we have developed an effective and robust analytical platform for comprehensive analyses of tissue peptidomes, which is suitable for high-throughput quantitative studies. The reproducibility and coverage of the platform, as well as the suitability of clinical ovarian tumor and patient-derived breast tumor xenograft samples with postexcision delay of up to 60 min before freezing for peptidomics analysis, have been demonstrated. Moreover, our data also show that the peptidomics profiles can effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. Peptidomics complements results obtainable from conventional bottom-up proteomics and provides insights not readily obtainable from such approaches.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Ováricas/metabolismo , Péptidos/metabolismo , Proteoma/metabolismo , Cromatografía Liquida , Femenino , Humanos , Proteómica/métodos , Espectrometría de Masas en Tándem , Factores de Tiempo
6.
J Proteome Res ; 13(3): 1200-10, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24467184

RESUMEN

Protein-stable isotope probing (protein-SIP) has strong potential for revealing key metabolizing taxa in complex microbial communities. While most protein-SIP work to date has been performed under controlled laboratory conditions to allow extensive isotope labeling of the target organism(s), a key application will be in situ studies of microbial communities for short periods of time under natural conditions that result in small degrees of partial labeling. One hurdle restricting large-scale in situ protein-SIP studies is the lack of algorithms and software for automated data processing of the massive data sets resulting from such studies. In response, we developed Stable Isotope Probing Protein Extraction Resources software (SIPPER) and applied it for large-scale extraction and visualization of data from short-term (3 h) protein-SIP experiments performed in situ on phototrophic bacterial mats isolated from Yellowstone National Park. Several metrics incorporated into the software allow it to support exhaustive analysis of the complex composite isotopic envelope observed as a result of low amounts of partial label incorporation. SIPPER also enables the detection of labeled molecular species without the need for any prior identification.


Asunto(s)
Proteínas Bacterianas/análisis , Consorcios Microbianos/genética , Proteoma/análisis , Programas Informáticos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Isótopos de Carbono , Biología Computacional , Minería de Datos , Expresión Génica , Marcaje Isotópico , Datos de Secuencia Molecular , Isótopos de Nitrógeno , Procesos Fototróficos , Proteoma/genética , Proteoma/metabolismo
7.
Anal Chem ; 86(13): 6268-76, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24881670

RESUMEN

Glycomics quintavariate-informed quantification (GlyQ-IQ) is a biologically guided glycomics analysis tool for identifying N-glycans in liquid chromatography-mass spectrometry (LC-MS) data. Glycomics LC-MS data sets have convoluted extracted ion chromatograms that are challenging to deconvolve with existing software tools. LC deconvolution into constituent pieces is critical in glycomics data sets because chromatographic peaks correspond to different intact glycan structural isomers. The biological targeted analysis approach offers several key advantages to traditional LC-MS data processing. A priori glycan information about the individual target's elemental composition allows for improved sensitivity by utilizing the exact isotope profile information to focus chromatogram generation and LC peak fitting on the isotopic species having the highest intensity. Glycan target annotation utilizes glycan family relationships and in source fragmentation in addition to high specificity feature LC-MS detection to improve the specificity of the analysis. The GlyQ-IQ software was developed in this work and evaluated in the context of profiling the N-glycan compositions from human serum LC-MS data sets. A case study is presented to demonstrate how GlyQ-IQ identifies and removes confounding chromatographic peaks from high mannose glycan isomers from human blood serum. In addition, GlyQ-IQ was used to generate a broad human serum N-glycan profile from a high resolution nanoelectrospray-liquid chromatography-tandem mass spectrometry (nESI-LC-MS/MS) data set. A total of 156 glycan compositions and 640 glycan isomers were detected from a single sample. Over 99% of the GlyQ-IQ glycan-feature assignments passed manual validation and are backed with high-resolution mass spectra.


Asunto(s)
Glicómica/métodos , Polisacáridos/análisis , Polisacáridos/sangre , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Humanos , Programas Informáticos
8.
Bioinformatics ; 29(21): 2804-5, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24008421

RESUMEN

MOTIVATION: The addition of ion mobility spectrometry to liquid chromatography-mass spectrometry experiments requires new, or updated, software tools to facilitate data processing. RESULTS: We introduce a command line software application LC-IMS-MS Feature Finder that searches for molecular ion signatures in multidimensional liquid chromatography-ion mobility spectrometry-mass spectrometry (LC-IMS-MS) data by clustering deisotoped peaks with similar monoisotopic mass, charge state, LC elution time and ion mobility drift time values. The software application includes an algorithm for detecting and quantifying co-eluting chemical species, including species that exist in multiple conformations that may have been separated in the IMS dimension. AVAILABILITY: LC-IMS-MS Feature Finder is available as a command-line tool for download at http://omics.pnl.gov/software/LC-IMS-MS_Feature_Finder.php. The Microsoft.NET Framework 4.0 is required to run the software. All other dependencies are included with the software package. Usage of this software is limited to non-profit research to use (see README). CONTACT: rds@pnnl.gov. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Programas Informáticos , Algoritmos , Análisis por Conglomerados , Iones , Análisis Espectral/métodos
9.
J Am Soc Mass Spectrom ; 35(8): 1991-2001, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39056469

RESUMEN

Ion mobility (IM) is often combined with LC-MS experiments to provide an additional dimension of separation for complex sample analysis. While highly complex samples are better characterized by the full dimensionality of LC-IM-MS experiments to uncover new information, downstream data analysis workflows are often not equipped to properly mine the additional IM dimension. For many samples the data acquisition benefits of including IM separations are all that is necessary to uncover sample information and the full dimensionality of the data is not required for data analysis. Postacquisition reduction and adaptation of the dimensions of LC-IM-MS and IM-MS experiments into an LC-MS format opens the possibility to use a plethora of existing software tools. In this work, we developed data file conversion tools to reduce the complexity of IM data analysis. Three data file transformations are introduced in the PNNL PreProcessor software: (1) mapping the IM axis to the LC axis for IM-MS data, (2) converting the drift time vs m/z space to CCS/z vs m/z space, and (3) transforming All Ions IM/MS mobility aligned fragmentation data to a standard LC-MS DDA data file format. These new data file conversions are demonstrated with corresponding lipidomics and proteomics workflows that leverage existing LC-MS data analysis software to highlight the benefits of the data transformations.

10.
Int J Mass Spectrom ; 354-355: 312-317, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25089116

RESUMEN

Ion mobility spectrometry in conjunction with liquid chromatography separations and mass spectrometry offers a range of new possibilities for analyzing complex biological samples. To fully utilize the information obtained from these three measurement dimensions, informatics tools based on the accurate mass and time tag methodology were modified to incorporate ion mobility spectrometry drift times for peptides observed in human serum. In this work a reference human serum database was created for 12,139 peptides and populated with the monoisotopic mass, liquid chromatography normalized elution time, and ion mobility spectrometry drift time(s) for each. We demonstrate that the use of three dimensions for peak matching during the peptide identification process resulted in an increased numbers of identifications and a lower false discovery rate relative to only using the mass and normalized elution time dimensions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA