Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Chem Phys ; 160(7)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38364006

RESUMEN

In this study, we investigated the self-ordering process in Langmuir films of polydisperse iron oxide nanoparticles on a water surface, employing in situ x-ray scattering, surface pressure-area isotherm analysis, and Brewster angle microscopy. X-ray reflectometry confirmed the formation of a monolayer, while grazing incidence small-angle x-ray scattering revealed short-range lateral correlations with a characteristic length equal to the mean particle size. Remarkably, our findings indicated that at zero surface pressure, the particles organized into submicrometer clusters, merging upon compression to form a homogeneous layer. These layers were subsequently transferred to a solid substrate using the Langmuir-Schaefer technique and further characterized via scanning electron microscopy and polarized neutron reflectometry. Notably, our measurements revealed a second characteristic length in the lateral correlations, orders of magnitude longer than the mean particle diameter, with polydisperse particles forming circular clusters densely packed in a hexagonal lattice. Furthermore, our evidence suggests that the lattice constant of this mesocrystal depends on the characteristics of the particle size distribution, specifically the mean particle size and the width of the size distribution. In addition, we observed internal size separation within these clusters, where larger particles were positioned closer to the center of the cluster. Finally, polarized neutron reflectometry measurements provided valuable insights into the magnetization profile across the layer.

2.
J Synchrotron Radiat ; 29(Pt 2): 369-376, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254299

RESUMEN

A way has been developed to measure the unit-cell parameters of a single crystal just from an energy scan with X-rays, even when the exact energy of the X-rays is not well defined due to an error in the pitch angle of the monochromator. The precision of this measurement reaches da/a ∼ 1 × 10-5. The method is based on the analysis of diffraction losses of the beam, transmitted through a single crystal (the so-called `glitch effect'). This method can be easily applied to any transmissive X-ray optical element made of single crystals (for example, X-ray lenses). The only requirements are the possibility to change the energy of the generated X-ray beam and some intensity monitor to measure the transmitted intensity. The method is agnostic to the error in the monochromator tuning and it can even be used for determination of the absolute pitch (or 2θ) angle of the monochromator. Applying the same method to a crystal with well known lattice parameters allows determination of the exact cell parameters of the monochromator at any energy.

3.
J Synchrotron Radiat ; 29(Pt 3): 711-720, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511004

RESUMEN

The X-ray reflectivity technique can provide out-of-plane electron-density profiles of surfaces, interfaces, and thin films, with atomic resolution accuracy. While current methodologies require high surface flatness, this becomes challenging for naturally curved surfaces, particularly for liquid metals, due to the very high surface tension. Here, the development of X-ray reflectivity measurements with beam sizes of a few tens of micrometres on highly curved liquid surfaces using a synchrotron diffractometer equipped with a double crystal beam deflector is presented. The proposed and developed method, which uses a standard reflectivity θ-2θ scan, is successfully applied to study in situ the bare surface of molten copper and molten copper covered by a graphene layer grown in situ by chemical vapor deposition. It was found that the roughness of the bare liquid surface of copper at 1400 K is 1.25 ± 0.10 Å, while the graphene layer is separated from the liquid surface by a distance of 1.55 ± 0.08 Šand has a roughness of 1.26 ± 0.09 Å.

4.
J Synchrotron Radiat ; 27(Pt 1): 44-50, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31868735

RESUMEN

Beryllium is one of the most transparent materials to hard X-ray radiation and, as a direct consequence, it is the main material for the fabrication of X-ray refractive optics and instrumentation for synchrotron radiation sources and free-electron laser facilities. However, it is known that almost all beryllium currently in use is polycrystalline material. In this paper, the influence of the microstructure of different beryllium grades on the optical properties of X-ray refractive lenses is studied. The experiments were performed at the ESRF ID06 beamline in X-ray coherent transmission microscopy mode in the near- and far-fields. Two sets of refractive lenses made of beryllium O-30-H and IS-50M grades with different internal microstructure were used. It was found that both beryllium grades have a strongly inhomogeneous structure, which inevitably produces speckle patterns under coherent illumination in imaging experiments. It was shown that fine-grained beryllium O-30-H is better suited for imaging applications, whereas beryllium IS-50M with a relatively large grain microstructure is more appropriate for focusing and collimation of X-rays. A discussion on the requirements for X-ray optical materials used at the third- and fourth-generation synchrotrons is also presented.

5.
Opt Express ; 28(4): 4773-4785, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32121709

RESUMEN

We demonstrate that ion-beam lithography can be applied to the fabrication of rotationally parabolic refractive diamond X-ray micro-lenses that are of interest to the field of high-resolution X-ray focusing and microscopy. Three single half-lenses with curvature radii of 4.8 µm were produced and stacked to form a compound refractive lens, which provided diffraction-limited focusing of X-ray radiation at the P14 beamline of PETRA-III (DESY). As shown with SEM, the lenses are free of expressed low- and high-frequency shape modulations with a figure error of < 200 nm and surface roughness of 30 nm. Precise micro-manipulation and stacking of individual lenses are demonstrated, which opens up new opportunities for compact X-ray microscopy with nanometer resolution.

6.
J Synchrotron Radiat ; 26(Pt 1): 109-118, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30655475

RESUMEN

Single-crystal diamond stands out among all the candidate materials that could be exploited to fabricate compound refractive lenses (CRLs) owing to its extremely stable properties. Among all related experimental features, beam divergence, χ-angles relative to the incoming beam in Eulerian geometry and different positions of the X-ray beam relative to the lens geometry may influence the transmission energy spectrum of CRLs. In addition, the orientation of the single-crystal diamond sample may also affect the glitches significantly. To verify these initial assumptions, two experiments, an energy scan and an ω-scan, were set up by employing a polished diamond plate consisting of five biconcave lenses. The results show that beam divergence does not affect the spectrum, nor do χ-angles when ω is set to zero. Nevertheless, different incident positions have an appreciable effect on the transmission spectrum, in particular the `strengths' of the glitches. This is attributed to absorption. The ω-scan setup is capable of determining the so-called orientation matrix, which may be used to predict both `energy positions' and `strengths' of the glitches.

7.
J Synchrotron Radiat ; 26(Pt 4): 1208-1212, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31274445

RESUMEN

A new ultra-compact transfocator (UCTF) based on X-ray compound refractive lenses (CRLs) is presented. The device can be used to change the number of one- and two-dimensional focusing CRLs by moving the individual parabolic lenses one-by-one independently, thus providing permanent energy and focal-length tunability for scanning and full-field X-ray microscopy applications. The small overall size and light weight of the device allow it to be integrated in any synchrotron beamline, while even simplifying the experimental layout. The UCTF was tested at the Excillium MetalJet microfocus X-ray source and at the P14 EMBL (PETRA-III) beamline, demonstrating high mechanical stability and lens positioning repeatability.

8.
J Synchrotron Radiat ; 26(Pt 3): 714-719, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31074435

RESUMEN

Full-field X-ray imaging and microscopy with polymer compound refractive nano-lenses is demonstrated. Experiments were carried out at beamline ID13 at the European Synchrotron and yielded a resolution of 100 nm. The lenses were demonstrated to be functioning even after an absorbed dose of ∼107 Gy. This article also discusses issues related to lens aberrations, astigmatism and radiation stability, and thus ways of improving the lens further are considered. Polymer nano-lenses are versatile and are promissing for nano-focusing and compact X-ray microscopy.

9.
J Synchrotron Radiat ; 24(Pt 1): 103-109, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28009551

RESUMEN

Linear parabolic diamond refractive lenses are presented, designed to withstand high thermal and radiation loads coming from upgraded accelerator X-ray sources. Lenses were manufactured by picosecond laser treatment of a high-quality single-crystal synthetic diamond. Twelve lenses with radius of curvature at parabola apex R = 200 µm, geometrical aperture A = 900 µm and length L = 1.5 mm were stacked as a compound refractive lens and tested at the ESRF ID06 beamline. A focal spot of size 2.2 µm and a gain of 20 were measured at 8 keV. The lens profile and surface quality were estimated by grating interferometry and X-ray radiography. In addition, the influence of X-ray glitches on the focusing properties of the compound refractive lens were studied.

10.
J Synchrotron Radiat ; 24(Pt 4): 775-780, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28664884

RESUMEN

Beryllium, being one of the most transparent materials to X-ray radiation, has become the material of choice for X-ray optics instrumentation at synchrotron radiation sources and free-electron laser facilities. However, there are concerns due to its high toxicity and, consequently, there is a need for special safety regulations. The authors propose to apply protective coatings in order to seal off beryllium from the ambient atmosphere, thus preventing degradation processes providing additional protection for users and prolonging the service time of the optical elements. This paper presents durability test results for Be windows coated with atomic-layer-deposition alumina layers run at the European Synchrotron Radiation Facility. Expositions were performed under monochromatic, pink and white beams, establishing conditions that the samples could tolerate without radiation damage. X-ray treatment was implemented in various environments, i.e. vacuum, helium, nitrogen, argon and dry air at different pressures. Post-process analysis revealed their efficiency for monochromatic and pink beams.

11.
J Synchrotron Radiat ; 23(Pt 5): 1104-9, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27577763

RESUMEN

A novel high-energy multi-lens interferometer consisting of 30 arrays of planar compound refractive lenses is reported. Under coherent illumination each lens array creates a diffraction-limited secondary source. Overlapping such coherent beams produces an interference pattern demonstrating strong longitudinal functional dependence. The proposed multi-lens interferometer was tested experimentally at the 100 m-long ID11 ESRF beamline in the X-ray energy range from 30 to 65 keV. The interference pattern generated by the interferometer was recorded at fundamental and fractional Talbot distances. An effective source size (FWHM) of the order of 15 µm was determined from the first Talbot image, proving the concept that the multi-lens interferometer can be used as a high-resolution tool for beam diagnostics.

12.
Opt Express ; 24(12): 13679-86, 2016 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-27410382

RESUMEN

We have implemented a modified Young's double slit experiment using pinholes with tunable separation distance coupled with compound refractive lens for hard X-ray spatial coherence characterization. Varying distance between the apertures provides a high sensitivity to the determination of spatial coherence across a wide range of experimental parameters. The use of refractive lenses as a Fourier transformer ensures far field registration conditions and allows the realization of a very compact experimental setup in comparison with the classical Young technique and its derivatives. The tunable double aperture interferometer was experimentally tested at the ESRF ID06 beamline in the energy range from 8 to 25 keV. The spatial coherence and the source size were measured by evaluating the visibility of the interference fringes at various separation distances between the apertures and this value agrees very well with the data obtained by other techniques. The proposed scheme can be used for comprehensive characterization of the coherence properties of the source on low emittance synchrotrons in the hard X-ray region.

13.
J Synchrotron Radiat ; 22(1): 23-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25537584

RESUMEN

For the first time, single-crystal diamond planar refractive lenses have been fabricated by laser micromachining in 300 µm-thick diamond plates which were grown by chemical vapour deposition. Linear lenses with apertures up to 1 mm and parabola apex radii up to 500 µm were manufactured and tested at the ESRF ID06 beamline. The large acceptance of these lenses allows them to be used as beam-conditioning elements. Owing to the unsurpassed thermal properties of single-crystal diamond, these lenses should be suitable to withstand the extreme flux densities expected at the planned fourth-generation X-ray sources.

14.
J Synchrotron Radiat ; 22(3): 796-800, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931099

RESUMEN

This paper reports a special device called a `speckle suppressor', which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase-amplitude contrast to the pure amplitude contrast in full-field microscopy.

15.
J Synchrotron Radiat ; 21(Pt 3): 484-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24763636

RESUMEN

A new method of harmonics rejection based on X-ray refractive optics has been proposed. Taking into account the fact that the focal distance of the refractive lens is energy-dependent, the use of an off-axis illumination of the lens immediately leads to spatial separation of the energy spectrum by focusing the fundamental harmonic at the focal point and suppressing the unfocused high-energy radiation with a screen absorber or slit. The experiment was performed at the ESRF ID06 beamline in the in-line geometry using an X-ray transfocator with compound refractive lenses. Using this technique the presence of the third harmonic has been reduced to 10(-3). In total, our method enabled suppression of all higher-order harmonics to five orders of magnitude using monochromator detuning. The method is well suited to third-generation synchrotron radiation sources and is very promising for the future ultimate storage rings.


Asunto(s)
Artefactos , Lentes , Refractometría/instrumentación , Sincrotrones/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Dispersión de Radiación , Rayos X
16.
Sci Total Environ ; 920: 170927, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38369156

RESUMEN

Pyrite (FeS2) often accommodates elevated concentrations of platinum-group elements in ores of magmatic and hydrothermal origin. In order to elucidate the role of pyrite in concentrating Pd, Pd-doped synthetic crystals were studied via X-ray absorption spectroscopy (XAS). Crystals were obtained by salt-flux method in the system saturated with respect to Pd at the temperature of 580 °C and sulphur fugacity of log f (S2) = -0.4. Scanning electron microscopy, electron probe microanalysis, and laser ablation inductively coupled plasma mass spectrometry studies demonstrated a uniform distribution of Pd within the pyrite crystals. The median and average values of Pd content of ∼0.7 ± 0.1 wt% were measured. Comparison of the Pd K-edge X-ray absorption near edge structure (XANES) spectra with the spectra of standards revealed that the formal oxidation state of Pd was close to +2. Fitting of the extended X-ray absorption fine structure (EXAFS) and Finite Difference Method for Near-Edge Structure (FDMNES) theoretical simulations of XANES spectra showed that Pd substituted for Fe in the crystal structure of pyrite. The isomorphous Pd in pyrite was octahedrally coordinated by S atoms at ∼2.385 Å. The PdS interatomic distance was 5.6 % larger than that of FeS due to the difference in their covalent radii of ∼5.3 %. The expansion caused by the incorporation of Pd into the pyrite structure disappeared at the distance of R > 3 Å. The information on the state of Pd in pyrite, including the local atomic environment and formal oxidation state, is essential for scientific and industrial purposes, e.g. physical-chemical modelling and improvement of leaching and extraction processing respectively.

17.
J Synchrotron Radiat ; 20(Pt 3): 433-40, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23592622

RESUMEN

Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ~10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV.


Asunto(s)
Lentes , Intensificación de Imagen Radiográfica/instrumentación , Radiografía/instrumentación , Difracción de Rayos X/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Iones Pesados , Dispersión de Radiación , Rayos X
18.
Langmuir ; 28(20): 7631-8, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22515482

RESUMEN

The vertical deposition technique for creating crystalline microstructures is applied for the first time to nonspherical colloids in the form of hollow silica cubes. Controlled deposition of the cubes results in large crystalline films with variable symmetry. The microstructures are characterized in detail with scanning electron microscopy and small-angle X-ray scattering. In single layers of cubes, distorted square to hexagonal ordered arrays are formed. For multilayered crystals, the intralayer ordering is predominantly hexagonal with a hollow site stacking, similar to that of the face centered cubic lattice for spheres. Additionally, a distorted square arrangement in the layers is also found to form under certain conditions. These crystalline films are promising for various applications such as photonic materials.

19.
Rev Sci Instrum ; 93(8): 083903, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050063

RESUMEN

This paper presents the results of using laboratory x-ray systems in the study of the crystal structure of anvil made from single-crystal diamond. The system is equipped with an Excillum MetalJet D2 + 70 kV high-brightness x-ray source with a liquid GaIn anode. The x-ray diffraction imaging (topography) technique with the use of a high-resolution x-ray Rigaku camera was applied to analyze crystal structure defects. Two-dimensional images were experimentally recorded using 400 and 111 reflections with a resolution of 1.5 and 5 µm, respectively. These topograms displayed various defects, such as growth striations and dislocations. Possible applications of the proposed laboratory-based optical scheme for high-pressure physics are discussed and future improvements to the setup are suggested.

20.
IUCrJ ; 9(Pt 5): 580-593, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36071800

RESUMEN

The self-transformation of solid microspheres into complex core-shell and hollow architectures cannot be explained by classical Ostwald ripening alone. Here, coherent X-ray diffraction imaging and 3D X-ray fluorescence were used to visualize in 3D the formation of hollow microparticles of calcium carbonate in the presence of polystyrene sulfonate (PSS). During the dissolution of the core made from 10-25 nm crystals, the shell developed a global spheroidal shape composed of an innermost layer of 30 nm particles containing high PSS content on which oriented vaterite crystals grew with their c axis mainly oriented along the meridians. The stabilizing role of PSS and the minimization of the intercrystal dipolar energy can explain in combination with Ostwald ripening the formation of these sophisticated structures as encountered in many systems such as ZnO, TiO2, Fe2O3, Co3O4, MnO2, Cu2O, ZnS, CaCO3 and Ca8H2(PO4)6·5H2O.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA