Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell ; 148(1-2): 259-72, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22225612

RESUMEN

Identification of the factors critical to the tumor-initiating cell (TIC) state may open new avenues in cancer therapy. Here we show that the metabolic enzyme glycine decarboxylase (GLDC) is critical for TICs in non-small cell lung cancer (NSCLC). TICs from primary NSCLC tumors express high levels of the oncogenic stem cell factor LIN28B and GLDC, which are both required for TIC growth and tumorigenesis. Overexpression of GLDC and other glycine/serine enzymes, but not catalytically inactive GLDC, promotes cellular transformation and tumorigenesis. We found that GLDC induces dramatic changes in glycolysis and glycine/serine metabolism, leading to changes in pyrimidine metabolism to regulate cancer cell proliferation. In the clinic, aberrant activation of GLDC correlates with poorer survival in lung cancer patients, and aberrant GLDC expression is observed in multiple cancer types. This link between glycine metabolism and tumorigenesis may provide novel targets for advancing anticancer therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/enzimología , Transformación Celular Neoplásica , Glicina-Deshidrogenasa (Descarboxilante)/metabolismo , Neoplasias Pulmonares/metabolismo , Secuencia de Aminoácidos , Antígenos CD/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Moléculas de Adhesión Celular Neuronal/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Proteínas Fetales/metabolismo , Glicina/metabolismo , Humanos , Datos de Secuencia Molecular , Neoplasias/enzimología , Neoplasias/genética , Proteínas de Unión al ARN , Alineación de Secuencia , Serina/metabolismo , Thermus thermophilus/enzimología , Trasplante Heterólogo
2.
Stem Cells ; 42(5): 416-429, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38381602

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, accounting for 31% of all deaths globally. Myocardial ischemia-reperfusion injury (IRI), a common complication of CVDs, is a major cause of mortality and morbidity. Studies have shown efficacious use of mesenchymal stem cells-derived small extracellular vesicles (MSCs-EVs) to mitigate IRI in animals, but few research has been done on human-related models. In this study, human embryonic stem cell-derived chambered cardiac organoid (CCO) was used as a model system to study the effects of MSC-EVs on myocardial IRI. The results revealed that MSC-EVs treatment reduced apoptosis and improved contraction resumption of the CCOs. Metabolomics analysis showed that this effect could be attributed to EVs' ability to prevent the accumulation of unsaturated very long-chain fatty acids (VLCFAs). This was corroborated when inhibition of fatty acid synthase, which was reported to reduce VLCFAs, produced a similar protective effect to EVs. Overall, this study uncovered the mechanistic role of MSC-EVs in mitigating IRI that involves preventing the accumulation of unsaturated VLCFA, decreasing cell death, and improving contraction resumption in CCOs.


Asunto(s)
Apoptosis , Vesículas Extracelulares , Células Madre Mesenquimatosas , Organoides , Humanos , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Organoides/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Ácidos Grasos/metabolismo , Cardiotónicos/metabolismo , Cardiotónicos/farmacología
3.
Mol Ther ; 32(3): 580-608, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38291757

RESUMEN

Cardiovascular disease (CVD) continues to impose a significant global health burden, necessitating the exploration of innovative treatment strategies. Ribonucleic acid (RNA)-based therapeutics have emerged as a promising avenue to address the complex molecular mechanisms underlying CVD pathogenesis. We present a comprehensive review of the current state of RNA therapeutics in the context of CVD, focusing on the diverse modalities that bring about transient or permanent modifications by targeting the different stages of the molecular biology central dogma. Considering the immense potential of RNA therapeutics, we have identified common gene targets that could serve as potential interventions for prevalent Mendelian CVD caused by single gene mutations, as well as acquired CVDs developed over time due to various factors. These gene targets offer opportunities to develop RNA-based treatments tailored to specific genetic and molecular pathways, presenting a novel and precise approach to address the complex pathogenesis of both types of cardiovascular conditions. Additionally, we discuss the challenges and opportunities associated with delivery strategies to achieve targeted delivery of RNA therapeutics to the cardiovascular system. This review highlights the immense potential of RNA-based interventions as a novel and precise approach to combat CVD, paving the way for future advancements in cardiovascular therapeutics.


Asunto(s)
Enfermedades Cardiovasculares , MicroARNs , Humanos , ARN , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia
4.
J Transl Med ; 19(1): 83, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602284

RESUMEN

The skin is made up of a plethora of cells arranged in multiple layers with complex and intricate vascular networks, creating a dynamic microenvironment of cells-to-matrix interactions. With limited donor sites, engineered skin substitute has been in high demand for many therapeutic purposes. Over the years, remarkable progress has occurred in the skin tissue-engineering field to develop skin grafts highly similar to native tissue. However, the major hurdle to successful engraftment is the incorporation of functional vasculature to provide essential nutrients and oxygen supply to the embedded cells. Limitations of traditional tissue engineering have driven the rapid development of vascularized skin tissue production, leading to new technologies such as 3D bioprinting, nano-fabrication and micro-patterning using hydrogel based-scaffold. In particular, the key hope to bioprinting would be the generation of interconnected functional vessels, coupled with the addition of specific cell types to mimic the biological and architectural complexity of the native skin environment. Additionally, stem cells have been gaining interest due to their highly regenerative potential and participation in wound healing. This review briefly summarizes the current cell therapies used in skin regeneration with a focus on the importance of vascularization and recent progress in 3D fabrication approaches to generate vascularized network in the skin tissue graft.


Asunto(s)
Bioimpresión , Tratamiento Basado en Trasplante de Células y Tejidos , Regeneración , Piel , Ingeniería de Tejidos , Andamios del Tejido , Cicatrización de Heridas
5.
Mol Cell ; 51(3): 349-59, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23932716

RESUMEN

Long noncoding RNAs (lncRNAs) are abundant in the mammalian transcriptome, and many are specifically expressed in the brain. We have identified a group of lncRNAs, including rhabdomyosarcoma 2-associated transcript (RMST), which are indispensable for neurogenesis. Here, we provide mechanistic insight into the role of human RMST in modulating neurogenesis. RMST expression is specific to the brain, regulated by the transcriptional repressor REST, and increases during neuronal differentiation, indicating a role in neurogenesis. RMST physically interacts with SOX2, a transcription factor known to regulate neural fate. RMST and SOX2 coregulate a large pool of downstream genes implicated in neurogenesis. Through RNA interference and genome-wide SOX2 binding studies, we found that RMST is required for the binding of SOX2 to promoter regions of neurogenic transcription factors. These results establish the role of RMST as a transcriptional coregulator of SOX2 and a key player in the regulation of neural stem cell fate.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/metabolismo , Empalme Alternativo , Sitios de Unión , Diferenciación Celular , Línea Celular , Proteínas Co-Represoras , Proteínas de Unión al ADN , Regulación del Desarrollo de la Expresión Génica , Humanos , Células-Madre Neurales , Neurogénesis , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , ARN Largo no Codificante/genética , ARN Interferente Pequeño
7.
Int J Mol Sci ; 19(4)2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29561796

RESUMEN

The rising interest in human induced pluripotent stem cell (hiPSC)-derived organoid culture has stemmed from the manipulation of various combinations of directed multi-lineage differentiation and morphogenetic processes that mimic organogenesis. Organoids are three-dimensional (3D) structures that are comprised of multiple cell types, self-organized to recapitulate embryonic and tissue development in vitro. This model has been shown to be superior to conventional two-dimensional (2D) cell culture methods in mirroring functionality, architecture, and geometric features of tissues seen in vivo. This review serves to highlight recent advances in the 3D organoid technology for use in modeling complex hereditary diseases, cancer, host-microbe interactions, and possible use in translational and personalized medicine where organoid cultures were used to uncover diagnostic biomarkers for early disease detection via high throughput pharmaceutical screening. In addition, this review also aims to discuss the advantages and shortcomings of utilizing organoids in disease modeling. In summary, studying human diseases using hiPSC-derived organoids may better illustrate the processes involved due to similarities in the architecture and microenvironment present in an organoid, which also allows drug responses to be properly recapitulated in vitro.


Asunto(s)
Enfermedad , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Organoides/citología , Humanos , Especificidad de Órganos
8.
Int J Mol Sci ; 19(9)2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30213032

RESUMEN

Genome editing has been well established as a genome engineering tool that enables researchers to establish causal linkages between genetic mutation and biological phenotypes, providing further understanding of the genetic manifestation of many debilitating diseases. More recently, the paradigm of genome editing technologies has evolved to include the correction of mutations that cause diseases via the use of nucleases such as zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs), and more recently, Cas9 nuclease. With the aim of reversing disease phenotypes, which arise from somatic gene mutations, current research focuses on the clinical translatability of correcting human genetic diseases in vivo, to provide long-term therapeutic benefits and potentially circumvent the limitations of in vivo cell replacement therapy. In this review, in addition to providing an overview of the various genome editing techniques available, we have also summarized several in vivo genome engineering strategies that have successfully demonstrated disease correction via in vivo genome editing. The various benefits and challenges faced in applying in vivo genome editing in humans will also be discussed.


Asunto(s)
Edición Génica/métodos , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Hemofilia A/genética , Hemofilia A/metabolismo , Humanos , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/metabolismo , Mutación/genética , Nucleasas con Dedos de Zinc/genética , Nucleasas con Dedos de Zinc/metabolismo
9.
Trends Genet ; 29(8): 461-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23562612

RESUMEN

The central nervous system (CNS) is a complex biological system composed of numerous cell types working in concert. The intricate development and functioning of this highly ordered structure depends upon exquisite spatial and temporal control of gene expression in the cells comprising the CNS. Thus, gene regulatory networks that control cell fates and functions play critical roles in the CNS. Failure to develop and maintain intricate regulatory networks properly leads to impaired development or neural dysfunction, which might manifest as neurological disorders. Long noncoding RNAs (lncRNAs) are emerging as important components of gene regulatory networks, working in concert with transcription factors and epigenetic regulators of gene expression. Interestingly, many lncRNAs are highly expressed in the adult and developing brain, often showing precise temporal and spatial patterns of expression. This specificity of expression and growing awareness of the importance of lncRNAs suggest that they play key roles in CNS development and function. In this review, we highlight the growing evidence for the importance of lncRNAs in the CNS and the indications that their dysregulation underlies some neurological disorders.


Asunto(s)
Sistema Nervioso Central/fisiopatología , ARN Largo no Codificante/genética , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiopatología , Sistema Nervioso Central/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/fisiopatología , Transcripción Genética
10.
Nature ; 463(7284): 1096-100, 2010 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-20139965

RESUMEN

Induced pluripotent stem (iPS) cells can be obtained by the introduction of defined factors into somatic cells. The combination of Oct4 (also known as Pou5f1), Sox2 and Klf4 (which we term OSK) constitutes the minimal requirement for generating iPS cells from mouse embryonic fibroblasts. These cells are thought to resemble embryonic stem cells (ESCs) on the basis of global gene expression analyses; however, few studies have tested the ability and efficiency of iPS cells to contribute to chimaerism, colonization of germ tissues, and most importantly, germ-line transmission and live birth from iPS cells produced by tetraploid complementation. Using genomic analyses of ESC genes that have roles in pluripotency and fusion-mediated somatic cell reprogramming, here we show that the transcription factor Tbx3 significantly improves the quality of iPS cells. iPS cells generated with OSK and Tbx3 (OSKT) are superior in both germ-cell contribution to the gonads and germ-line transmission frequency. However, global gene expression profiling could not distinguish between OSK and OSKT iPS cells. Genome-wide chromatin immunoprecipitation sequencing analysis of Tbx3-binding sites in ESCs suggests that Tbx3 regulates pluripotency-associated and reprogramming factors, in addition to sharing many common downstream regulatory targets with Oct4, Sox2, Nanog and Smad1. This study underscores the intrinsic qualitative differences between iPS cells generated by different methods, and highlights the need to rigorously characterize iPS cells beyond in vitro studies.


Asunto(s)
Quimera/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , Gónadas/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Fusión Celular , Reprogramación Celular , Quimera/embriología , Inmunoprecipitación de Cromatina , Embrión de Mamíferos/citología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Proteína Smad1/metabolismo , Proteínas de Dominio T Box/genética , Transcripción Genética/genética , Transducción Genética
11.
Nature ; 468(7321): 316-20, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-20953172

RESUMEN

The derivation of human ES cells (hESCs) from human blastocysts represents one of the milestones in stem cell biology. The full potential of hESCs in research and clinical applications requires a detailed understanding of the genetic network that governs the unique properties of hESCs. Here, we report a genome-wide RNA interference screen to identify genes which regulate self-renewal and pluripotency properties in hESCs. Interestingly, functionally distinct complexes involved in transcriptional regulation and chromatin remodelling are among the factors identified in the screen. To understand the roles of these potential regulators of hESCs, we studied transcription factor PRDM14 to gain new insights into its functional roles in the regulation of pluripotency. We showed that PRDM14 regulates directly the expression of key pluripotency gene POU5F1 through its proximal enhancer. Genome-wide location profiling experiments revealed that PRDM14 colocalized extensively with other key transcription factors such as OCT4, NANOG and SOX2, indicating that PRDM14 is integrated into the core transcriptional regulatory network. More importantly, in a gain-of-function assay, we showed that PRDM14 is able to enhance the efficiency of reprogramming of human fibroblasts in conjunction with OCT4, SOX2 and KLF4. Altogether, our study uncovers a wealth of novel hESC regulators wherein PRDM14 exemplifies a key transcription factor required for the maintenance of hESC identity and the reacquisition of pluripotency in human somatic cells.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Genoma Humano/genética , Interferencia de ARN , Proteínas Represoras/metabolismo , Animales , Secuencia de Bases , Línea Celular , Reprogramación Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas de Unión al ARN , Proteínas Represoras/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción
12.
Aging Dis ; 15(2): 503-516, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815912

RESUMEN

Aging is a complex physiological process encompassing both physical and cognitive decline over time. This intricate process is governed by a multitude of hallmarks and pathways, which collectively contribute to the emergence of numerous age-related diseases. In response to the remarkable increase in human life expectancy, there has been a substantial rise in research focusing on the development of anti-aging therapies and pharmacological interventions. Mitochondrial dysfunction, a critical factor in the aging process, significantly impacts overall cellular health. In this extensive review, we will explore the contemporary landscape of anti-aging strategies, placing particular emphasis on the promising potential of mitotherapy as a ground-breaking approach to counteract the aging process. Moreover, we will investigate the successful application of mitochondrial transplantation in both animal models and clinical trials, emphasizing its translational potential. Finally, we will discuss the inherent challenges and future possibilities of mitotherapy within the realm of aging research and intervention.


Asunto(s)
Envejecimiento , Rejuvenecimiento , Animales , Humanos , Rejuvenecimiento/fisiología , Envejecimiento/fisiología , Mitocondrias/metabolismo , Proteómica
13.
Nat Cell Biol ; 8(10): 1114-23, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16980957

RESUMEN

Embryonic stem (ES) cells are pluripotent cells that can self-renew or differentiate into many cell types. A unique network of transcription factors and signalling molecules are essential for maintaining this capability. Here, we report that a spalt family member, Sall4, is required for the pluripotency of ES cells. Similarly to Oct4, a reduction in Sall4 levels in mouse ES cells results in respecification, under the appropriate culture conditions, of ES cells to the trophoblast lineage. Sall4 regulates transcription of Pou5f1 which encodes Oct4. Sall4 binds to the highly conserved regulatory region of the Pou5f1 distal enhancer and activates Pou5f1 expression in vivo and in vitro. Microinjection of Sall4 small interfering (si) RNA into mouse zygotes resulted in reduction of Sall4 and Oct4 mRNAs in preimplantation embryos and significant expansion of Cdx2 expression into the inner cell mass. These results demonstrate that Sall4 is a transcriptional activator of Pou5f1 and has a critical role in the maintenance of ES cell pluripotency by modulating Oct4 expression. The data also indicates that Sall4 is important for early embryonic cell-fate decisions.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Embrión de Mamíferos/citología , Regulación de la Expresión Génica , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/fisiología , Animales , Secuencia de Bases , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Desarrollo Embrionario , Femenino , Ratones , Datos de Secuencia Molecular , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Embarazo , Regiones Promotoras Genéticas , Homología de Secuencia de Ácido Nucleico , Factores de Transcripción/genética , Transcripción Genética
14.
Mol Ther ; 20(12): 2335-46, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22968480

RESUMEN

Previous efforts to derive lung progenitor cells from human embryonic stem (hES) cells using embryoid body formation or stromal feeder cocultures had been limited by low efficiencies. Here, we report a step-wise differentiation method to drive both hES and induced pluripotent stem (iPS) cells toward the lung lineage. Our data demonstrated a 30% efficiency in generating lung epithelial cells (LECs) that expresses various distal lung markers. Further enrichment of lung progenitor cells using a stem cell marker, CD166 before transplantation into bleomycin-injured NOD/SCID mice resulted in enhanced survivability of mice and improved lung pulmonary functions. Immunohistochemistry of lung sections from surviving mice further confirmed the specific engraftment of transplanted cells in the damaged lung. These cells were shown to express surfactant protein C, a specific marker for distal lung progenitor in the alveoli. Our study has therefore demonstrated the proof-of-concept of using iPS cells for the repair of acute lung injury, demonstrating the potential usefulness of using patient's own iPS cells to prevent immune rejection which arise from allogenic transplantation.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/terapia , Antígenos CD/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Proteínas Fetales/metabolismo , Células Madre Pluripotentes Inducidas/citología , Lesión Pulmonar Aguda/genética , Animales , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/fisiología , Células Madre Embrionarias/trasplante , Citometría de Flujo , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/trasplante , Ratones
15.
Stem Cell Res Ther ; 14(1): 367, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093391

RESUMEN

BACKGROUND: Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) hold great promise for cardiac disease modelling, drug discovery and regenerative medicine. Despite the advancement in various differentiation protocols, the heterogeneity of the generated population composed of diverse cardiac subtypes poses a significant challenge to their practical applications. Mixed populations of cardiac subtypes can compromise disease modelling and drug discovery, while transplanting them may lead to undesired arrhythmias as they may not integrate and synchronize with the host tissue's contractility. It is therefore crucial to identify cell surface markers that could enable high purity of ventricular CMs for subsequent applications. METHODS: By exploiting the fact that immature CMs expressing myosin light chain 2A (MLC2A) will gradually express myosin light chain 2 V (MLC2V) protein as they mature towards ventricular fate, we isolated signal regulatory protein alpha (SIRPA)-positive CMs expressing intracellular MLC2A or MLC2V using MARIS (method for analysing RNA following intracellular sorting). Subsequently, RNA sequencing analysis was performed to examine the gene expression profile of MLC2A + and MLC2V + sorted CMs. We identified genes that were significantly up-regulated in MLC2V + samples to be potential surface marker candidates for ventricular specification. To validate these surface markers, we performed immunostaining and western blot analysis to measure MLC2A and MLC2V protein expressions in SIRPA + CMs that were either positive or negative for the putative surface markers, JAK2 (Janus kinase 2) or CD200. We then characterized the electrophysiological properties of surface marker-sorted CMs, using fluo-4 AM, a green-fluorescent calcium indicator, to measure the cellular calcium transient at the single cell level. For functional validation, we investigated the response of the surface marker-sorted CMs to vernakalant, an atrial-selective anti-arrhythmic agent. RESULTS: In this study, while JAK2 and CD200 were identified as potential surface markers for the purification of ventricular-like CMs, the SIRPA+/JAK2+ population showed a higher percentage of MLC2V-expressing cells (~ 90%) compared to SIRPA+/CD200+ population (~ 75%). SIRPA+/JAK2+ sorted CMs exhibited ventricular-like electrophysiological properties, including slower beating rate, slower calcium depolarization and longer calcium repolarization duration. Importantly, vernakalant had limited to no significant effect on the calcium repolarization duration of SIRPA+/JAK2+ population, indicating their enrichment for ventricular-like CMs. CONCLUSION: Our study lays the groundwork for the identification of cardiac subtype surface markers that allow purification of cardiomyocyte sub-populations. Our findings suggest that JAK2 can be employed as a cell surface marker for enrichment of hPSC-derived ventricular-like CMs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Miocitos Cardíacos/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Janus Quinasa 2/farmacología , Calcio/metabolismo , Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo
16.
Biomedicines ; 10(7)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35884846

RESUMEN

The COVID-19 pandemic has driven the scientific community to adopt an efficient and reliable model that could keep up with the infectious disease arms race. Coinciding with the pandemic, three dimensional (3D) human organoids technology has also gained traction in the field of infectious disease. An in vitro construct that can closely resemble the in vivo organ, organoid technology could bridge the gap between the traditional two-dimensional (2D) cell culture and animal models. By harnessing the multi-lineage characteristic of the organoid that allows for the recapitulation of the organotypic structure and functions, 3D human organoids have emerged as an essential tool in the field of infectious disease research. In this review, we will be providing a comparison between conventional systems and organoid models. We will also be highlighting how organoids played a role in modelling common infectious diseases and molecular mechanisms behind the pathogenesis of causative agents. Additionally, we present the limitations associated with the current organoid models and innovative strategies that could resolve these shortcomings.

17.
Stem Cell Reports ; 17(8): 1810-1823, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35839773

RESUMEN

Accurate modeling of the heart electrophysiology to predict arrhythmia susceptibility remains a challenge. Current electrophysiological analyses are hypothesis-driven models drawing conclusions from changes in a small subset of electrophysiological parameters because of the difficulty of handling and understanding large datasets. Thus, we develop a framework to train machine learning classifiers to distinguish between healthy and arrhythmic cardiomyocytes using their calcium cycling properties. By training machine learning classifiers on a generated dataset containing a total of 3,003 healthy derived cardiomyocytes and their various arrhythmic states, the multi-class models achieved >90% accuracy in predicting arrhythmia presence and type. We also demonstrate that a binary classifier trained to distinguish cardiotoxic arrhythmia from healthy electrophysiology could determine the key biological changes associated with that specific arrhythmia. Therefore, machine learning algorithms can be used to characterize underlying arrhythmic patterns in samples to improve in vitro preclinical models and complement current in vivo systems.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Arritmias Cardíacas , Calcio , Humanos , Aprendizaje Automático
18.
Acta Pharm Sin B ; 12(10): 3905-3923, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36213535

RESUMEN

Cytochrome P4502J2 (CYP2J2) metabolizes arachidonic acid (AA) to cardioprotective epoxyeicosatrienoic acids (EETs). Dronedarone, an antiarrhythmic drug prescribed for treatment of atrial fibrillation (AF) induces cardiac adverse effects (AEs) with poorly understood mechanisms. We previously demonstrated that dronedarone inactivates CYP2J2 potently and irreversibly, disrupts AA-EET pathway leading to cardiac mitochondrial toxicity rescuable via EET enrichment. In this study, we investigated if mitigation of CYP2J2 inhibition prevents dronedarone-induced cardiac AEs. We first synthesized a deuterated analogue of dronedarone (termed poyendarone) and demonstrated that it neither inactivates CYP2J2, disrupts AA-EETs metabolism nor causes cardiac mitochondrial toxicity in vitro. Our patch-clamp experiments demonstrated that pharmacoelectrophysiology of dronedarone is unaffected by deuteration. Next, we show that dronedarone treatment or CYP2J2 knockdown in spontaneously beating cardiomyocytes indicative of depleted CYP2J2 activity exacerbates beat-to-beat (BTB) variability reflective of proarrhythmic phenotype. In contrast, poyendarone treatment yields significantly lower BTB variability compared to dronedarone in cardiomyocytes indicative of preserved CYP2J2 activity. Importantly, poyendarone and dronedarone display similar antiarrhythmic properties in the canine model of persistent AF, while poyendarone substantially reduces beat-to-beat variability of repolarization duration suggestive of diminished proarrhythmic risk. Our findings prove that deuteration of dronedarone prevents CYP2J2 inactivation and mitigates dronedarone-induced cardiac AEs.

19.
Stem Cell Res Ther ; 13(1): 529, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36544188

RESUMEN

BACKGROUND: Tissue organoids generated from human pluripotent stem cells are valuable tools for disease modelling and to understand developmental processes. While recent progress in human cardiac organoids revealed the ability of these stem cell-derived organoids to self-organize and intrinsically formed chamber-like structure containing a central cavity, it remained unclear the processes involved that enabled such chamber formation. METHODS: Chambered cardiac organoids (CCOs) differentiated from human embryonic stem cells (H7) were generated by modulation of Wnt/ß-catenin signalling under fully defined conditions, and several growth factors essential for cardiac progenitor expansion. Transcriptomic profiling of day 8, day 14 and day 21 CCOs was performed by quantitative PCR and single-cell RNA sequencing. Endothelin-1 (EDN1) known to induce oxidative stress in cardiomyocytes was used to induce cardiac hypertrophy in CCOs in vitro. Functional characterization of cardiomyocyte contractile machinery was performed by immunofluorescence staining and analysis of brightfield and fluorescent video recordings. Quantitative PCR values between groups were compared using two-tailed Student's t tests. Cardiac organoid parameters comparison between groups was performed using two-tailed Mann-Whitney U test when sample size is small; otherwise, Welch's t test was used. Comparison of calcium kinetics parameters derived from the fluorescent data was performed using two-tailed Student's t tests. RESULTS: Importantly, we demonstrated that a threshold number of cardiac progenitor was essential to line the circumference of the inner cavity to ensure proper formation of a chamber within the organoid. Single-cell RNA sequencing revealed improved maturation over a time course, as evidenced from increased mRNA expression of cardiomyocyte maturation genes, ion channel genes and a metabolic shift from glycolysis to fatty acid ß-oxidation. Functionally, CCOs recapitulated clinical cardiac hypertrophy by exhibiting thickened chamber walls, reduced fractional shortening, and increased myofibrillar disarray upon treatment with EDN1. Furthermore, electrophysiological assessment of calcium transients displayed tachyarrhythmic phenotype observed as a consequence of rapid depolarization occurring prior to a complete repolarization. CONCLUSIONS: Our findings shed novel insights into the role of progenitors in CCO formation and pave the way for the robust generation of cardiac organoids, as a platform for future applications in disease modelling and drug screening in vitro.


Asunto(s)
Enfermedades Cardiovasculares , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Enfermedades Cardiovasculares/metabolismo , Calcio/metabolismo , Organoides/metabolismo , Diferenciación Celular/fisiología , Miocitos Cardíacos/metabolismo , Cardiomegalia/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo
20.
Front Cell Dev Biol ; 9: 788955, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926467

RESUMEN

Medical research in the recent years has achieved significant progress due to the increasing prominence of organoid technology. Various developed tissue organoids bridge the limitations of conventional 2D cell culture and animal models by recapitulating in vivo cellular complexity. Current 3D cardiac organoid cultures have shown their utility in modelling key developmental hallmarks of heart organogenesis, but the complexity of the organ demands a more versatile model that can investigate more fundamental parameters, such as structure, organization and compartmentalization of a functioning heart. This review will cover the prominence of cardiac organoids in recent research, unpack current in vitro 3D models of the developing heart and look into the prospect of developing physiologically appropriate cardiac organoids with translational applicability. In addition, we discuss some of the limitations of existing cardiac organoid models in modelling embryonic development of the heart and manifestation of cardiac diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA