Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 197(6): 2280-9, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27489283

RESUMEN

Although ribosomal proteins (RP) are thought to primarily facilitate biogenesis of the ribosome and its ability to synthesize protein, emerging evidence suggests that individual RP can perform critical regulatory functions that control developmental processes. We showed previously that despite the ubiquitous expression of the RP ribosomal protein L22 (Rpl22), germline ablation of Rpl22 in mice causes a selective, p53-dependent block in the development of αß, but not γδ, T cell progenitors. Nevertheless, the basis by which Rpl22 loss selectively induces p53 in αß T cell progenitors remained unclear. We show in this study that Rpl22 regulates the development of αß T cells by restraining endoplasmic reticulum (ER) stress responses. In the absence of Rpl22, ER stress is exacerbated in αß, but not γδ, T cell progenitors. The exacerbated ER stress in Rpl22-deficient αß T lineage progenitors is responsible for selective induction of p53 and their arrest, as pharmacological induction of stress is sufficient to induce p53 and replicate the selective block of αß T cells, and attenuation of ER stress signaling by knockdown of protein kinase R-like ER kinase, an ER stress sensor, blunts p53 induction and rescues development of Rpl22-deficient αß T cell progenitors. Rpl22 deficiency appears to exacerbate ER stress by interfering with the ability of ER stress signals to block new protein synthesis. Our finding that Rpl22 deficiency exacerbates ER stress responses and induces p53 in αß T cell progenitors provides insight into how a ubiquitously expressed RP can perform regulatory functions that are selectively required by some cell lineages but not others.


Asunto(s)
Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica , Células Precursoras de Linfocitos T/fisiología , Proteínas de Unión al ARN/fisiología , Receptores de Antígenos de Linfocitos T alfa-beta , Proteínas Ribosómicas/fisiología , Transducción de Señal , Subgrupos de Linfocitos T/fisiología , Animales , Diferenciación Celular , Linaje de la Célula/fisiología , Ratones , Proteínas Ribosómicas/deficiencia , Subgrupos de Linfocitos T/inmunología , Proteína p53 Supresora de Tumor/metabolismo
2.
J Immunol ; 191(9): 4699-708, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24078698

RESUMEN

The pathogenesis of experimental cerebral malaria (ECM) is an immunologic process, mediated in part by Th1 CD4(+) T cells. However, the role of the Th1 CD4(+) T cell differentiation program on the ability to control parasitemia and susceptibility to ECM disease during blood stage malaria has never been assessed directly. Using the Plasmodium berghei ANKA murine model of ECM and mice deficient for the transcription factor T-bet (the master regulator of Th1 cells) on the susceptible C57BL/6 background, we demonstrate that although T-bet plays a role in the regulation of parasite burden, it also promotes the pathogenesis of ECM. T-bet-deficient (Tbx21(-/-)) mice had higher parasitemia than wild type controls did during the ECM phase of disease (17.7 ± 3.1% versus 10.9 ± 1.5%). In addition, although 100% (10/10) of wild type mice developed ECM by day 9 after infection, only 30% (3/10) of Tbx21(-/-) mice succumbed to disease during the cerebral phase of infection. Resistance to ECM in Tbx21(-/-) mice was associated with diminished numbers of IFN-γ-producing CD4(+) T cells in the spleen and a lower accumulation of CD4(+) and CD8(+) T cells in the brain. An augmented Th2 immune response characterized by enhanced production of activated GATA-3(+) CD4(+) T cells and elevated levels of the eotaxin, MCP-1, and G-CSF cytokines was observed in the absence of T-bet. Our results suggest that in virulent malarias, immune modulation or therapy resulting in an early shift toward a Th2 response may help to ameliorate the most severe consequences of malaria immunopathogenesis and the prospect of host survival.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Malaria Cerebral/inmunología , Parasitemia/inmunología , Plasmodium berghei/inmunología , Proteínas de Dominio T Box/inmunología , Animales , Encéfalo/citología , Encéfalo/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Quimiocina CCL11/biosíntesis , Quimiocina CCL2/biosíntesis , Femenino , Factor de Transcripción GATA3/metabolismo , Factor Estimulante de Colonias de Granulocitos/biosíntesis , Interferón gamma/biosíntesis , Activación de Linfocitos/inmunología , Malaria Cerebral/parasitología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasmodium berghei/patogenicidad , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética
3.
Physiol Genomics ; 46(19): 699-724, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25096367

RESUMEN

Bioinformatic approaches are intended to provide systems level insight into the complex biological processes that underlie serious diseases such as cancer. In this review we describe current bioinformatic resources, and illustrate how they have been used to study a clinically important example: epithelial-to-mesenchymal transition (EMT) in lung cancer. Lung cancer is the leading cause of cancer-related deaths and is often diagnosed at advanced stages, leading to limited therapeutic success. While EMT is essential during development and wound healing, pathological reactivation of this program by cancer cells contributes to metastasis and drug resistance, both major causes of death from lung cancer. Challenges of studying EMT include its transient nature, its molecular and phenotypic heterogeneity, and the complicated networks of rewired signaling cascades. Given the biology of lung cancer and the role of EMT, it is critical to better align the two in order to advance the impact of precision oncology. This task relies heavily on the application of bioinformatic resources. Besides summarizing recent work in this area, we use four EMT-associated genes, TGF-ß (TGFB1), NEDD9/HEF1, ß-catenin (CTNNB1) and E-cadherin (CDH1), as exemplars to demonstrate the current capacities and limitations of probing bioinformatic resources to inform hypothesis-driven studies with therapeutic goals.


Asunto(s)
Biología Computacional/métodos , Biología Computacional/tendencias , Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias Pulmonares/fisiopatología , Modelos Biológicos , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Cadherinas/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Fosfoproteínas/genética , Transducción de Señal/genética , Factor de Crecimiento Transformador beta1/genética , beta Catenina/genética
4.
Cell Rep ; 16(3): 657-71, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27396341

RESUMEN

Anti-Müllerian hormone (AMH) and its type II receptor AMHR2, both previously thought to primarily function in gonadal tissue, were unexpectedly identified as potent regulators of transforming growth factor (TGF-ß)/bone morphogenetic protein (BMP) signaling and epithelial-mesenchymal transition (EMT) in lung cancer. AMH is a TGF-ß/BMP superfamily member, and AMHR2 heterodimerizes with type I receptors (ALK2, ALK3) also used by the type II receptor for BMP (BMPR2). AMH signaling regulates expression of BMPR2, ALK2, and ALK3, supports protein kinase B-nuclear factor κB (AKT-NF-κB) and SMAD survival signaling, and influences BMP-dependent signaling in non-small cell lung cancer (NSCLC). AMH and AMHR2 are selectively expressed in epithelial versus mesenchymal cells, and loss of AMH/AMHR2 induces EMT. Independent induction of EMT reduces expression of AMH and AMHR2. Importantly, EMT associated with depletion of AMH or AMHR2 results in chemoresistance but sensitizes cells to the heat shock protein 90 (HSP90) inhibitor ganetespib. Recognition of this AMH/AMHR2 axis helps to further elucidate TGF-ß/BMP resistance-associated signaling and suggests new strategies for therapeutic targeting of EMT.


Asunto(s)
Hormona Antimülleriana/metabolismo , Plasticidad de la Célula/fisiología , Resistencia a Antineoplásicos/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Transición Epitelial-Mesenquimal/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas de Choque Térmico/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Ratones , Ratones SCID , FN-kappa B/metabolismo , Receptores de Péptidos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA