Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(40): 18296-18304, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36173876

RESUMEN

Thiosulfate dehydrogenases are bacterial cytochromes that contribute to the oxidation of inorganic sulfur. The active sites of these enzymes contain low-spin c-type heme with Cys-/His axial ligation. However, the reduction potentials of these hemes are several hundred mV more negative than that of the thiosulfate/tetrathionate couple (Em, +198 mV), making it difficult to rationalize the thiosulfate oxidizing capability. Here, we describe the reaction of Campylobacter jejuni thiosulfate dehydrogenase (TsdA) with sulfite, an analogue of thiosulfate. The reaction leads to stoichiometric conversion of the active site Cys to cysteinyl sulfonate (Cα-CH2-S-SO3-) such that the protein exists in a form closely resembling a proposed intermediate in the pathway for thiosulfate oxidation that carries a cysteinyl thiosulfate (Cα-CH2-S-SSO3-). The active site heme in the stable sulfonated protein displays an Em approximately 200 mV more positive than the Cys-/His-ligated state. This can explain the thiosulfate oxidizing activity of the enzyme and allows us to propose a catalytic mechanism for thiosulfate oxidation. Substrate-driven release of the Cys heme ligand allows that side chain to provide the site of substrate binding and redox transformation; the neighboring heme then simply provides a site for electron relay to an appropriate partner. This chemistry is distinct from that displayed by the Cys-ligated hemes found in gas-sensing hemoproteins and in enzymes such as the cytochromes P450. Thus, a further class of thiolate-ligated hemes is proposed, as exemplified by the TsdA centers that have evolved to catalyze the controlled redox transformations of inorganic oxo anions of sulfur.


Asunto(s)
Cisteína , Hemo , Proteínas Bacterianas/química , Catálisis , Cisteína/metabolismo , Citocromos/química , Hemo/química , Ligandos , Oxidación-Reducción , Estrés Oxidativo , Oxidorreductasas/metabolismo , Sulfitos , Azufre/metabolismo , Tiosulfatos/metabolismo
2.
Int J Mol Sci ; 23(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35008657

RESUMEN

A series of 1,3,5-triazinyl aminobenzenesulfonamides substituted by aminoalcohol, aminostilbene, and aminochalcone structural motifs was synthesized as potential human carbonic anhydrase (hCA) inhibitors. The compounds were evaluated on their inhibition of tumor-associated hCA IX and hCA XII, hCA VII isoenzyme present in the brain, and physiologically important hCA I and hCA II. While the test compounds had only a negligible effect on physiologically important isoenzymes, many of the studied compounds significantly affected the hCA IX isoenzyme. Several compounds showed activity against hCA XII; (E)-4-{2-[(4-[(2,3-dihydroxypropyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (31) and (E)-4-{2-[(4-[(4-hydroxyphenyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (32) were the most effective inhibitors with KIs = 4.4 and 5.9 nM, respectively. In addition, the compounds were tested against vancomycin-resistant Enterococcus faecalis (VRE) isolates. (E)-4-[2-({4-[(4-cinnamoylphenyl)amino]-6-[(4-hydroxyphenyl)amino]-1,3,5-triazin-2-yl}amino)ethyl]benzenesulfonamide (21) (MIC = 26.33 µM) and derivative 32 (MIC range 13.80-55.20 µM) demonstrated the highest activity against all tested strains. The most active compounds were evaluated for their cytotoxicity against the Human Colorectal Tumor Cell Line (HCT116 p53 +/+). Only 4,4'-[(6-chloro-1,3,5-triazin-2,4-diyl)bis(iminomethylene)]dibenzenesulfonamide (7) and compound 32 demonstrated an IC50 of ca. 6.5 µM; otherwise, the other selected derivatives did not show toxicity at concentrations up to 50 µM. The molecular modeling and docking of active compounds into various hCA isoenzymes, including bacterial carbonic anhydrase, specifically α-CA present in VRE, was performed to try to outline a possible mechanism of selective anti-VRE activity.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Sulfonamidas/farmacología , Enterococos Resistentes a la Vancomicina/efectos de los fármacos , Antineoplásicos/uso terapéutico , Anhidrasa Carbónica I/antagonistas & inhibidores , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica IX/antagonistas & inhibidores , Anhidrasas Carbónicas/efectos de los fármacos , Células HCT116 , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico , Relación Estructura-Actividad
3.
Molecules ; 24(11)2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31159174

RESUMEN

Expansions of trinucleotide repeats (TNRs) are associated with genetic disorders such as Friedreich's ataxia. The tumor suppressor p53 is a central regulator of cell fate in response to different types of insults. Sequence and structure-selective modes of DNA recognition are among the main attributes of p53 protein. The focus of this work was analysis of the p53 structure-selective recognition of TNRs associated with human neurodegenerative diseases. Here, we studied binding of full length p53 and several deletion variants to TNRs folded into DNA hairpins or loops. We demonstrate that p53 binds to all studied non-B DNA structures, with a preference for non-B DNA structures formed by pyrimidine (Py) rich strands. Using deletion mutants, we determined the C-terminal DNA binding domain of p53 to be crucial for recognition of such non-B DNA structures. We also observed that p53 in vitro prefers binding to the Py-rich strand over the purine (Pu) rich strand in non-B DNA substrates formed by sequence derived from the first intron of the frataxin gene. The binding of p53 to this region was confirmed using chromatin immunoprecipitation in human Friedreich's ataxia fibroblast and adenocarcinoma cells. Altogether these observations provide further evidence that p53 binds to TNRs' non-B DNA structures.


Asunto(s)
ADN/química , ADN/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Conformación de Ácido Nucleico , Expansión de Repetición de Trinucleótido , Repeticiones de Trinucleótidos , Proteína p53 Supresora de Tumor/metabolismo , Expresión Génica , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Pirimidinas , Proteínas Recombinantes , Proteína p53 Supresora de Tumor/química
4.
Biochim Biophys Acta Gene Regul Mech ; 1867(3): 195050, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029558

RESUMEN

Armadillo repeat-containing proteins (ARMCs) are a large family found throughout eukaryotes, which play prominent roles in cell adhesion, signaling and cytoskeletal regulation. The ARMC6 protein is highly conserved in primates, including humans, but to date does not have a clear function beyond initial hints of a link to cancer and telomerase activity. We report here in vitro experiments showing ARMC6 binding to DNA promoter sequences from several cancer-related genes (e.g., EGFR, VEGF and c-MYC), and also to the telomeric RNA repeat (TERRA). ARMC6 binding activity appears to recognize G-quadruplex motifs, which are being increasingly implicated as structure-based protein binding sites in chromosome maintenance and repair. In vivo investigation of ARMC6 function revealed that when this protein is overexpressed in human cell lines, there is different expression of genes connected with oncogenic pathways and those implicated in downstream non-canonical telomerase pathways (e.g., VEGF, hTERT, c-MYC, ESM1, MMP3). ARMC6 is already known to interact with human shelterin protein TRF2 and telomerase. The protein binds G-quadruplex structures and does so preferentially to RNA over DNA. As such, this protein may be an example of how a non-canonical nucleic acid structural motif allows mediation between gene regulation and telomeric chromatin rearrangement pathways.


Asunto(s)
Proteínas del Dominio Armadillo , G-Cuádruplex , Regiones Promotoras Genéticas , Telómero , Humanos , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Dominio Armadillo/genética , Sitios de Unión , Línea Celular Tumoral , Proteínas de Unión al ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/metabolismo , Unión Proteica , ARN/metabolismo , ARN/genética , Telomerasa/metabolismo , Telomerasa/genética , Telómero/metabolismo , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA