RESUMEN
Smart cities use Information and Communication Technologies (ICT) to enrich existing public services and to improve citizens' quality of life. In this scenario, Mobile CrowdSensing (MCS) has become, in the last few years, one of the most prominent paradigms for urban sensing. MCS allow people roaming around with their smart devices to collectively sense, gather, and share data, thus leveraging the possibility to capture the pulse of the city. That can be very helpful in emergency scenarios, such as the COVID-19 pandemic, that require to track the movement of a high number of people to avoid risky situations, such as the formation of crowds. In fact, using mobility traces gathered via MCS, it is possible to detect crowded places and suggest people safer routes/places. In this work, we propose an edge-anabled mobile crowdsensing platform, called ParticipAct, that exploits edge nodes to compute possible dangerous crowd situations and a federated blockchain network to store reward states. Edge nodes are aware of all critical situation in their range and can warn the smartphone client with a smart push notification service that avoids firing too many messages by adapting the warning frequency according to the transport and the specific subarea in which clients are located.
RESUMEN
Selected biological resources used as raw materials in beer production are important drivers of innovation and segmentation in the dynamic market of craft beers. Among these resources, local/regional ingredients have several benefits, such as strengthening the connection with territories, enhancing the added value of the final products, and reducing supply costs and environmental impacts. It is assumed that specific ingredients provide differences in flavours, aromas, and, more generally, sensory attributes of the final products. In particular, of interest are ingredients with features attributable and/or linked to a specific geographical origin. This review encompasses the potential contribution and exploitation of biodiversity in the main classes of beer inputs, such as cereals, hops, microbes, and adjuncts, with a specific emphasis on autochthonous biological resources, detailing the innovative paths already explored and documented in the scientific literature. This dissertation proposes an overview of the impact on beer quality for each raw material category, highlighting the benefits and limitations that influence its concrete applications and scale-up, from the field to the stain. The topics explored promote, in the sector of craft beers, trends already capitalised in the production of other alcoholic beverages, such as the preservation and revalorisation of minor and autochthonous varieties, the exploitation of yeast and bacteria strains isolated from specific sites/plant varieties, and the valorisation of the effects of peculiar terroirs on the quality of agricultural products. Finally, the examined tendencies contribute toward reducing the environmental impacts of craft beer manufacturing, and are in line with sustainable development of food systems, increasing the economic driver of biodiversity preservation.