Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Osteoporos Int ; 35(6): 971-996, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38353706

RESUMEN

The use of opportunistic computed tomography (CT) image-based biomarkers may be a low-cost strategy for screening older individuals at high risk for osteoporotic fractures and populations that are not sufficiently targeted. This review aimed to assess the discriminative ability of image-based biomarkers derived from existing clinical routine CT scans for hip, vertebral, and major osteoporotic fracture prediction. A systematic search in PubMed MEDLINE, Embase, Cochrane, and Web of Science was conducted from the earliest indexing date until July 2023. The evaluation of study quality was carried out using a modified Quality Assessment Tool for Diagnostic Accuracy Studies (QUADAS-2) checklist. The primary outcome of interest was the area under the curve (AUC) and its corresponding 95% confidence intervals (CIs) obtained for four main categories of biomarkers: areal bone mineral density (BMD), image attenuation, volumetric BMD, and finite element (FE)-derived biomarkers. The meta-analyses were performed using random effects models. Sixty-one studies were included in this review, among which 35 were synthesized in a meta-analysis and the remaining articles were qualitatively synthesized. In comparison to the pooled AUC of areal BMD (0.73 [95% CI 0.71-0.75]), the pooled AUC values for predicting osteoporotic fractures for FE-derived parameters (0.77 [95% CI 0.72-0.81]; p < 0.01) and volumetric BMD (0.76 [95% CI 0.71-0.81]; p < 0.01) were significantly higher, but there was no significant difference with the pooled AUC for image attenuation (0.73 [95% CI 0.66-0.79]; p = 0.93). Compared to areal BMD, volumetric BMD and FE-derived parameters may provide a significant improvement in the discrimination of osteoporotic fractures using opportunistic CT assessments.


Asunto(s)
Biomarcadores , Densidad Ósea , Fracturas Osteoporóticas , Tomografía Computarizada por Rayos X , Humanos , Fracturas Osteoporóticas/diagnóstico por imagen , Fracturas Osteoporóticas/fisiopatología , Densidad Ósea/fisiología , Tomografía Computarizada por Rayos X/métodos , Biomarcadores/sangre , Tamizaje Masivo/métodos , Fracturas de la Columna Vertebral/fisiopatología , Fracturas de la Columna Vertebral/diagnóstico por imagen , Fracturas de Cadera/diagnóstico por imagen , Fracturas de Cadera/fisiopatología , Análisis de Elementos Finitos
2.
J Magn Reson Imaging ; 57(6): 1676-1695, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36912262

RESUMEN

Preoperative clinical MRI protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this second part, we review magnetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), susceptibility-weighted imaging (SWI), MRI-PET, MR elastography (MRE), and MR-based radiomics applications. The first part of this review addresses dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) MRI, arterial spin labeling (ASL), diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting (MRF). EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Neoplasias Encefálicas , Glioma , Imagen por Resonancia Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Medios de Contraste , Glioma/diagnóstico por imagen , Glioma/cirugía , Glioma/patología , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Periodo Preoperatorio
3.
J Magn Reson Imaging ; 57(6): 1655-1675, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36866773

RESUMEN

Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast-enhanced MRI, arterial spin labeling, diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility-weighted imaging, MRI-PET, MR elastography, and MR-based radiomics applications. Evidence Level: 3 Technical Efficacy: Stage 2.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Imagen por Resonancia Magnética/métodos , Glioma/diagnóstico por imagen , Glioma/cirugía , Glioma/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Espectroscopía de Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética
4.
Cephalalgia ; 43(2): 3331024221128278, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36751858

RESUMEN

BACKGROUND: Migraine is a highly prevalent primary headache disorder. Despite a high burden of disease, key disease mechanisms are not entirely understood. Functional magnetic resonance imaging is an imaging method using the blood-oxygen-level-dependent signal, which has been increasingly used in migraine research over recent years. This systematic review summarizes recent findings employing functional magnetic resonance imaging for the investigation of migraine. METHODS: We conducted a systematic search and selection of functional magnetic resonance imaging applications in migraine from April 2014 to December 2021 (PubMed and references of identified articles according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines). Methodological details and main findings were extracted and synthesized. RESULTS: Out of 224 articles identified, 114 were included after selection. Repeatedly emerging structures of interest included the insula, brainstem, limbic system, hypothalamus, thalamus, and functional networks. Assessment of functional brain changes in response to treatment is emerging, and machine learning has been used to investigate potential functional magnetic resonance imaging-based markers of migraine. CONCLUSIONS: A wide variety of functional magnetic resonance imaging-based metrics were found altered across the brain for heterogeneous migraine cohorts, partially correlating with clinical parameters and supporting the concept to conceive migraine as a brain state. However, a majority of findings from previous studies have not been replicated, and studies varied considerably regarding image acquisition and analyses techniques. Thus, while functional magnetic resonance imaging appears to have the potential to advance our understanding of migraine pathophysiology, replication of findings in large representative datasets and precise, standardized reporting of clinical data would likely benefit the field and further increase the value of observations.


Asunto(s)
Trastornos Migrañosos , Humanos , Encéfalo , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Hipotálamo
5.
Eur Radiol ; 33(8): 5882-5893, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36928566

RESUMEN

OBJECTIVES: T2-weighted (w) fat sat (fs) sequences, which are important in spine MRI, require a significant amount of scan time. Generative adversarial networks (GANs) can generate synthetic T2-w fs images. We evaluated the potential of synthetic T2-w fs images by comparing them to their true counterpart regarding image and fat saturation quality, and diagnostic agreement in a heterogenous, multicenter dataset. METHODS: A GAN was used to synthesize T2-w fs from T1- and non-fs T2-w. The training dataset comprised scans of 73 patients from two scanners, and the test dataset, scans of 101 patients from 38 multicenter scanners. Apparent signal- and contrast-to-noise ratios (aSNR/aCNR) were measured in true and synthetic T2-w fs. Two neuroradiologists graded image (5-point scale) and fat saturation quality (3-point scale). To evaluate whether the T2-w fs images are indistinguishable, a Turing test was performed by eleven neuroradiologists. Six pathologies were graded on the synthetic protocol (with synthetic T2-w fs) and the original protocol (with true T2-w fs) by the two neuroradiologists. RESULTS: aSNR and aCNR were not significantly different between the synthetic and true T2-w fs images. Subjective image quality was graded higher for synthetic T2-w fs (p = 0.023). In the Turing test, synthetic and true T2-w fs could not be distinguished from each other. The intermethod agreement between synthetic and original protocol ranged from substantial to almost perfect agreement for the evaluated pathologies. DISCUSSION: The synthetic T2-w fs might replace a physical T2-w fs. Our approach validated on a challenging, multicenter dataset is highly generalizable and allows for shorter scan protocols. KEY POINTS: • Generative adversarial networks can be used to generate synthetic T2-weighted fat sat images from T1- and non-fat sat T2-weighted images of the spine. • The synthetic T2-weighted fat sat images might replace a physically acquired T2-weighted fat sat showing a better image quality and excellent diagnostic agreement with the true T2-weighted fat images. • The present approach validated on a challenging, multicenter dataset is highly generalizable and allows for significantly shorter scan protocols.


Asunto(s)
Imagen por Resonancia Magnética , Columna Vertebral , Humanos , Columna Vertebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Cintigrafía
6.
Pain Med ; 24(2): 158-164, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35944225

RESUMEN

OBJECTIVE: To evaluate effectiveness and safety of computed tomography (CT)-guided cyst rupture with intraarticular contrast-enhanced injection of steroid and local anesthetic as first choice therapy in patients with facet joint cyst-induced radicular pain. DESIGN: Retrospective data set analysis. SETTING: University hospital. SUBJECTS: One hundred and twenty-one patients suffering from radicular pain attributable to facet joint cysts were included. METHODS: The rate of patients without following surgery was assessed and defined as surrogate to measure effectiveness. Patients' characteristics, procedure-associated complications, technical aspects, and imaging findings on magnetic resonance imaging (MRI) were analyzed. A subgroup of 65 patients (54%) underwent telephone interview to assess pain relief and clinical outcome measured by Numeric Rating Scale and Oswestry Disability Index. Analyses between the groups with and without surgery were performed by Fisher exact test and two-sample unpaired t-test, respectively. RESULTS: The effectiveness of CT-guided cyst rupture was found to be 66.1%. Procedure-induced pain yielded in premature abort in two cases (1.7%). The detection of epidural contrast agent was statistically significantly associated with no need for surgery (P = .010). The cyst level was associated with the status of following surgery (P = .026), that is, cysts at lower lumbar spine were easier to rupture than cysts at other locations (cervical, thoracic, or upper lumbar spine). No further significant association was found. CONCLUSIONS: CT-guided cyst rupture as the first-choice therapy in patients with cyst-induced radicular pain was safe and effective. Successful cyst rupture was associated with no need for surgery. Cysts at lower lumbar spine revealed the highest success rate.


Asunto(s)
Quistes , Dolor de la Región Lumbar , Quiste Sinovial , Articulación Cigapofisaria , Humanos , Quiste Sinovial/complicaciones , Quiste Sinovial/diagnóstico por imagen , Quiste Sinovial/cirugía , Articulación Cigapofisaria/diagnóstico por imagen , Articulación Cigapofisaria/cirugía , Estudios Retrospectivos , Dolor de la Región Lumbar/terapia , Quistes/patología , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Tomografía Computarizada por Rayos X/métodos , Artralgia/complicaciones , Resultado del Tratamiento
7.
Pain Med ; 24(Suppl 1): S81-S94, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-36069660

RESUMEN

Management of patients suffering from low back pain (LBP) is challenging and requires development of diagnostic techniques to identify specific patient subgroups and phenotypes in order to customize treatment and predict clinical outcome. The Back Pain Consortium (BACPAC) Research Program Spine Imaging Working Group has developed standard operating procedures (SOPs) for spinal imaging protocols to be used in all BACPAC studies. These SOPs include procedures to conduct spinal imaging assessments with guidelines for standardizing the collection, reading/grading (using structured reporting with semi-quantitative evaluation using ordinal rating scales), and storage of images. This article presents the approach to image acquisition and evaluation recommended by the BACPAC Spine Imaging Working Group. While the approach is specific to BACPAC studies, it is general enough to be applied at other centers performing magnetic resonance imaging (MRI) acquisitions in patients with LBP. The herein presented SOPs are meant to improve understanding of pain mechanisms and facilitate patient phenotyping by codifying MRI-based methods that provide standardized, non-invasive assessments of spinal pathologies. Finally, these recommended procedures may facilitate the integration of better harmonized MRI data of the lumbar spine across studies and sites within and outside of BACPAC studies.


Asunto(s)
Degeneración del Disco Intervertebral , Dolor de la Región Lumbar , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/patología , Región Lumbosacra , Dolor de la Región Lumbar/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
8.
Pain Med ; 24(Suppl 1): S95-S104, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-36721327

RESUMEN

OBJECTIVE: One aim of the Back Pain Consortium (BACPAC) Research Program is to develop an integrated model of chronic low back pain that is informed by combined data from translational research and clinical trials. We describe efforts to maximize data harmonization and accessibility to facilitate Consortium-wide analyses. METHODS: Consortium-wide working groups established harmonized data elements to be collected in all studies and developed standards for tabular and nontabular data (eg, imaging and omics). The BACPAC Data Portal was developed to facilitate research collaboration across the Consortium. RESULTS: Clinical experts developed the BACPAC Minimum Dataset with required domains and outcome measures to be collected by use of questionnaires across projects. Other nonrequired domain-specific measures are collected by multiple studies. To optimize cross-study analyses, a modified data standard was developed on the basis of the Clinical Data Interchange Standards Consortium Study Data Tabulation Model to harmonize data structures and facilitate integration of baseline characteristics, participant-reported outcomes, chronic low back pain treatments, clinical exam, functional performance, psychosocial characteristics, quantitative sensory testing, imaging, and biomechanical data. Standards to accommodate the unique features of chronic low back pain data were adopted. Research units submit standardized study data to the BACPAC Data Portal, developed as a secure cloud-based central data repository and computing infrastructure for researchers to access and conduct analyses on data collected by or acquired for BACPAC. CONCLUSIONS: BACPAC harmonization efforts and data standards serve as an innovative model for data integration that could be used as a framework for other consortia with multiple, decentralized research programs.


Asunto(s)
Dolor de la Región Lumbar , Humanos , Dolor de la Región Lumbar/terapia , Evaluación de Resultado en la Atención de Salud , Proyectos de Investigación
9.
Clin Oral Investig ; 27(7): 3705-3712, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37039958

RESUMEN

OBJECTIVES: Maxillary sinus mucositis is frequently associated with odontogenic foci. Periapical inflammation of maxillary molars and premolars cannot be visualized directly using radiation-based imaging. The purpose of this study was to answer the following clinical question: among patients with periapical inflammatory processes in the maxilla, does the use of magnetic resonance imaging (MRI), as compared to conventional periapical (AP) and panoramic radiography (OPT), improve diagnostic accuracy? METHODS: Forty-two subjects with generalized periodontitis were scanned on a 3 T MRI. Sixteen asymptomatic subjects with mucosal swelling of the maxillary sinus were enrolled in the study. Periapical edema was assessed using short tau inversion recovery (STIR) sequence. Apical osteolysis and mucosal swelling were assessed by MRI, AP, and OPT imaging using the periapical index score (PAI). Comparisons between groups were performed with chi-squared tests with Yates' correction. Significance was set at p < 0.05. RESULTS: Periapical lesions of maxillary premolars and molars were identified in 16 subjects, 21 sinuses, and 58 teeth. Bone edema and PAI scores were significantly higher using MRI as compared to OPT and AP (p < 0.05). Using the STIR sequence, a significant association of PAI score > 1 and the presence of mucosal swelling in the maxillary sinus was detected (p = 0.03). CONCLUSION: Periapical inflammation and maxillary mucositis could be visualized using STIR imaging. The use of MRI may help detect early, subtle inflammatory changes in the periapical tissues surrounding maxillary dentition. Early detection could guide diagnostic criteria, as well as treatment and prevention.


Asunto(s)
Mucositis , Periodontitis Periapical , Humanos , Seno Maxilar/diagnóstico por imagen , Seno Maxilar/patología , Estudios de Factibilidad , Inflamación/diagnóstico por imagen , Inflamación/patología , Periodontitis Periapical/complicaciones , Imagen por Resonancia Magnética , Tomografía Computarizada de Haz Cónico/métodos
10.
Clin Oral Investig ; 27(9): 5403-5412, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37464086

RESUMEN

OBJECTIVES: To detect and evaluate early signs of apical periodontitis using MRI based on a 3D short-tau-inversion-recovery (STIR) sequence compared to conventional panoramic radiography (OPT) and periapical radiographs in patients with apical periodontitis. MATERIALS AND METHODS: Patients with clinical evidence of periodontal disease were enrolled prospectively and received OPT as well as MRI of the viscerocranium including a 3D-STIR sequence. The MRI sequences were assessed for the occurrence and extent of bone changes associated with apical periodontitis including bone edema, periradicular cysts, and dental granulomas. OPTs and intraoral periapical radiographs, if available, were assessed for corresponding periapical radiolucencies using the periapical index (PAI). RESULTS: In total, 232 teeth of 37 patients (mean age 62±13.9 years, 18 women) were assessed. In 69 cases reactive bone edema was detected on MRI with corresponding radiolucency according to OPT. In 105 cases edema was detected without corresponding radiolucency on OPT. The overall extent of edema measured on MRI was significantly larger compared to the radiolucency on OPT (mean: STIR 2.4±1.4 mm, dental radiograph 1.3±1.2 mm, OPT 0.8±1.1 mm, P=0.01). The overall PAI score was significantly higher on MRI compared to OPT (mean PAI: STIR 1.9±0.7, dental radiograph 1.3±0.5, OPT 1.2±0.7, P=0.02). CONCLUSION: Early detection and assessment of bone changes of apical periodontitis using MRI was feasible while the extent of bone edema measured on MRI exceeded the radiolucencies measured on OPT. CLINICAL RELEVANCE: In clinical routine, dental MRI might be useful for early detection and assessment of apical periodontitis before irreversible bone loss is detected on conventional panoramic and intraoral periapical radiographs.


Asunto(s)
Periodontitis Periapical , Diente no Vital , Humanos , Femenino , Persona de Mediana Edad , Anciano , Tratamiento del Conducto Radicular , Periodontitis Periapical/complicaciones , Radiografía , Imagen por Resonancia Magnética , Diente no Vital/diagnóstico por imagen
11.
Clin Oral Investig ; 27(3): 1227-1233, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36208329

RESUMEN

OBJECTIVES: To assess and compare the diagnostic performance of CT-like images based on a three- dimensional (3D) T1-weighted spoiled gradient-echo sequence (3D T1 GRE) with CT in patients with acute traumatic fractures of the mandible. MATERIALS AND METHODS: Subjects with acute mandibular fractures diagnosed on conventional CT were prospectively recruited and received an additional 3 T MRI with a CT-like 3D T1 GRE sequence. The images were assessed by two radiologists with regard to fracture localization, degree of dislocation, and number of fragments. Bone to soft tissue contrast, diagnostic confidence, artifacts, and overall image quality were rated using a five-point Likert-scale. Agreement of measurements was assessed using an independent t-test. RESULTS: Fourteen subjects and 22 fracture sites were included (26 ± 3.9 years; 4 females, 10 males). All traumatic fractures were accurately detected on CT-like MRI (n = 22, κ 1.00 (95% CI 1.00-1.00)). There was no statistically significant difference in the assessment of the fracture dislocation (axial mean difference (MD) 0.06 mm, p = 0.93, coronal MD, 0.08 mm, p = 0.89 and sagittal MD, 0.04 mm, p = 0.96). The agreement for the fracture classification as well as the inter- and intra-rater agreement was excellent (range κ 0.92-0.98 (95% CI 0.96-0.99)). CONCLUSION: Assessment of mandibular fractures was feasible and accurate using CT-like MRI based on a 3D T1 GRE sequence and is comparable to conventional CT. CLINICAL RELEVANCE: For the assessment of acute mandibular fractures, CT-like MRI might become a useful alternative to CT in order to reduce radiation exposure particularly in young patients.


Asunto(s)
Fracturas Mandibulares , Masculino , Femenino , Humanos , Adulto Joven , Estudios de Factibilidad , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X
12.
J Headache Pain ; 24(1): 84, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438700

RESUMEN

BACKGROUND: Tension-type headache (TTH) is the most prevalent primary headache disorder. Neck pain is commonly associated with primary headaches and the trigemino-cervical complex (TCC) refers to the convergence of trigeminal and cervical afferents onto neurons of the brainstem, thus conceptualizes the emergence of headache in relation to neck pain. However, no objective biomarkers exist for the myofascial involvement in primary headaches. This study aimed to investigate the involvement of the trapezius muscles in primary headache disorders by quantitative magnetic resonance imaging (MRI), and to explore associations between muscle T2 values and headache frequency and neck pain. METHODS: This cohort study prospectively enrolled fifty participants (41 females, age range 20-31 years): 16 subjects with TTH only (TTH-), 12 with mixed-type TTH plus migraine (TTH+), and 22 healthy controls (HC). The participants completed fat-suppressed T2-prepared three-dimensional turbo spin-echo MRI, a headache diary (over 30 days prior to MRI), manual palpation (two weeks before MRI), and evaluation of neck pain (on the day of MRI). The bilateral trapezius muscles were manually segmented, followed by muscle T2 extraction. Associations between muscle T2 and the presence of neck pain as well as the number of days with headache (considering the 30 days prior to imaging using the headache calendar) were analyzed using regression models (adjusting for age, sex, and body mass index). RESULTS: The TTH+ group demonstrated the highest muscle T2 values (right side: 31.4 ± 1.2 ms, left side: 31.4 ± 0.8 ms) as compared to the TTH- group or HC group (p < 0.001). Muscle T2 was significantly associated with the number of headache days (ß-coefficient: 2.04, p = 0.04) and the presence of neck pain (odds ratio: 2.26, p = 0.04). With muscle T2 as the predictor, the area under the curve for differentiating between HC and the TTH+ group was 0.82. CONCLUSIONS: Increased T2 of trapezius muscles may represent an objective imaging biomarker for myofascial involvement in primary headache disorders, which could help to improve patient phenotyping and therapy evaluation. Pathophysiologically, the increased muscle T2 values could be interpreted as a surrogate of neurogenic inflammation and peripheral sensitization within myofascial tissues.


Asunto(s)
Músculos Superficiales de la Espalda , Cefalea de Tipo Tensional , Femenino , Adulto Joven , Humanos , Adulto , Cefalea de Tipo Tensional/diagnóstico por imagen , Dolor de Cuello/diagnóstico por imagen , Estudios de Cohortes , Músculos Superficiales de la Espalda/diagnóstico por imagen , Cefalea
13.
J Neurosci Res ; 100(5): 1201-1217, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33789358

RESUMEN

Traumatic brain injuries (TBIs) are common with an estimated 27.1 million cases per year. Approximately 80% of TBIs are categorized as mild TBI (mTBI) based on initial symptom presentation. While in most individuals, symptoms resolve within days to weeks, in some, symptoms become chronic. Advanced neuroimaging has the potential to characterize brain morphometric, microstructural, biochemical, and metabolic abnormalities following mTBI. However, translational studies are needed for the interpretation of neuroimaging findings in humans with respect to the underlying pathophysiological processes, and, ultimately, for developing novel and more targeted treatment options. In this review, we introduce the most commonly used animal models for the study of mTBI. We then summarize the neuroimaging findings in humans and animals after mTBI and, wherever applicable, the translational aspects of studies available today. Finally, we highlight the importance of translational approaches and outline future perspectives in the field of translational neuroimaging in mTBI.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Encéfalo/diagnóstico por imagen , Conmoción Encefálica/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos
14.
Magn Reson Med ; 88(3): 1126-1139, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35481686

RESUMEN

PURPOSE: To study the effect of field inhomogeneity distributions in trabecularized bone regions on the gradient echo (GRE) signal with short TEs and to characterize quantification errors on R2*$$ {R}_2^{\ast } $$ and proton density fat fraction (PDFF) maps when using a water-fat model with an exponential R2*$$ {R}_2^{\ast } $$ decay model at short TEs. METHODS: Field distortions were simulated based on a trabecular bone micro CT dataset. Simulations were performed for different bone volume fractions (BV/TV) and for different bone-fat composition values. A multi-TE UTE acquisition was developed to acquire multiple UTEs with random order to minimize eddy currents. The acquisition was validated in phantoms and applied in vivo in a volunteer's ankle and knee. Chemical shift encoded MRI (CSE-MRI) based on a Cartesian multi-TE GRE scan was acquired in the spine of patients with metastatic bone disease. RESULTS: Simulations showed that signal deviations from the exponential signal decay at short TEs were more prominent for a higher BV/TV. UTE multi-TE measurements reproduced in vivo the simulation-based predicted behavior. In regions with high BV/TV, the presence of field inhomogeneities induced an R2*$$ {R}_2^{\ast } $$ underestimation in trabecularized bone marrow when using CSE-MRI at 3T with a short TE. CONCLUSION: R2*$$ {R}_2^{\ast } $$ can be underestimated when using short TEs (<2 ms at 3 T) and a water-fat model with an exponential R2*$$ {R}_2^{\ast } $$ decay model in multi-echo GRE acquisitions of trabecularized bone marrow.


Asunto(s)
Médula Ósea , Protones , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/patología , Médula Ósea/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Agua
15.
Magn Reson Med ; 87(1): 417-430, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34255370

RESUMEN

PURPOSE: To (a) develop a preconditioned water-fat total field inversion (wfTFI) algorithm that directly estimates the susceptibility map from complex multi-echo gradient echo data for water-fat regions and to (b) evaluate the performance of the proposed wfTFI quantitative susceptibility mapping (QSM) method in comparison with a local field inversion (LFI) method and a linear total field inversion (TFI) method in the spine. METHODS: Numerical simulations and in vivo spine multi-echo gradient echo measurements were performed to compare wfTFI to an algorithm based on disjoint background field removal (BFR) and LFI and to a formerly proposed TFI algorithm. The data from 1 healthy volunteer and 10 patients with metastatic bone disease were included in the analysis. Clinical routine computed tomography (CT) images were used as a reference standard to distinguish osteoblastic from osteolytic changes. The ability of the QSM methods to distinguish osteoblastic from osteolytic changes was evaluated. RESULTS: The proposed wfTFI method was able to decrease the normalized root mean square error compared to the LFI and TFI methods in the simulation. The in vivo wfTFI susceptibility maps showed reduced BFR artifacts, noise amplification, and streaking artifacts compared to the LFI and TFI maps. wfTFI provided a significantly higher diagnostic confidence in differentiating osteolytic and osteoblastic lesions in the spine compared to the LFI method (p = .012). CONCLUSION: The proposed wfTFI method can minimize BFR artifacts, noise amplification, and streaking artifacts in water-fat regions and can thus better differentiate between osteoblastic and osteolytic changes in patients with metastatic disease compared to LFI and the original TFI method.


Asunto(s)
Imagen por Resonancia Magnética , Agua , Algoritmos , Artefactos , Encéfalo , Mapeo Encefálico , Humanos , Procesamiento de Imagen Asistido por Computador , Columna Vertebral
16.
J Magn Reson Imaging ; 56(5): 1600-1608, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35285561

RESUMEN

BACKGROUND: Paraspinal musculature (PSM) is increasingly recognized as a contributor to low back pain (LBP), but with conventional MRI sequences, assessment is limited. Chemical shift encoding-based water-fat MRI (CSE-MRI) enables the measurement of PSM fat fraction (FF), which may assist investigations of chronic LBP. PURPOSE: To investigate associations between PSM parameters from conventional MRI and CSE-MRI and between PSM parameters and pain. STUDY TYPE: Prospective, cross-sectional. POPULATION: Eighty-four adults with chronic LBP (44.6 ± 13.4 years; 48 males). FIELD STRENGTH/SEQUENCE: 3-T, T1-weighted fast spin-echo and iterative decomposition of water and fat with echo asymmetry and least squares estimation sequences. ASSESSMENT: T1-weighted images for Goutallier classification (GC), muscle volume, lumbar indentation value, and muscle-fat index, CSE-MRI for FF extraction (L1/2-L5/S1). Pain was self-reported using a visual analogue scale (VAS). Intra- and/or interreader agreement was assessed for MRI-derived parameters. STATISTICAL TESTS: Mixed-effects and linear regression models to 1) assess relationships between PSM parameters (entire cohort and subgroup with GC grades 0 and 1; statistical significance α = 0.0025) and 2) evaluate associations of PSM parameters with pain (α = 0.05). Intraclass correlation coefficients (ICCs) for intra- and/or interreader agreement. RESULTS: The FF showed excellent intra- and interreader agreement (ICC range: 0.97-0.99) and was significantly associated with GC at all spinal levels. Subgroup analysis suggested that early/subtle changes in PSM are detectable with FF but not with GC, given the absence of significant associations between FF and GC (P-value range: 0.036 at L5/S1 to 0.784 at L2/L3). Averaged over all spinal levels, FF and GC were significantly associated with VAS scores. DATA CONCLUSION: In the absence of FF, GC may be the best surrogate for PSM quality. Given the ability of CSE-MRI to detect muscle alterations at early stages of PSM degeneration, this technique may have potential for further investigations of the role of PSM in chronic LBP. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Dolor de la Región Lumbar , Músculos Paraespinales , Adulto , Estudios Transversales , Humanos , Dolor de la Región Lumbar/diagnóstico por imagen , Vértebras Lumbares , Imagen por Resonancia Magnética/métodos , Masculino , Músculos Paraespinales/diagnóstico por imagen , Músculos Paraespinales/fisiología , Estudios Prospectivos , Agua
17.
Eur Radiol ; 32(9): 6207-6214, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35384459

RESUMEN

OBJECTIVES: To determine the correlation between cervicothoracic and lumbar volumetric bone mineral density (vBMD) in an average cohort of adults and to identify specific diagnostic thresholds for the cervicothoracic spine on the individual subject level. METHODS: In this HIPPA-compliant study, we retrospectively included 260 patients (59.7 ± 18.3 years, 105 women), who received a contrast-enhanced or non-contrast-enhanced CT scan. vBMD was extracted using an automated pipeline ( https://anduin.bonescreen.de ). The association of vBMD between each vertebra spanning C2-T12 and the averaged values at the lumbar spine (L1-L3) was analyzed before and after semiquantitative assessment of fracture status and degeneration, and respective vertebra-specific cut-off values for osteoporosis were calculated using linear regression. RESULTS: In both women and men, trabecular vBMD decreased with age in the cervical, thoracic, and lumbar regions. vBMD values of cervicothoracic vertebrae showed strong correlations with lumbar vertebrae (L1-L3), with a median Pearson value of r = 0.87 (range: rC2 = 0.76 to rT12 = 0.96). The correlation coefficients were significantly lower (p < 0.0001) without excluding fractured and degenerated vertebrae, median r = 0.82 (range: rC2 = 0.69 to rT12 = 0.93). Respective cut-off values for osteoporosis peaked at C4 (209.2 mg/ml) and decreased to 83.8 mg/ml at T12. CONCLUSION: Our data show a high correlation between clinically used mean L1-L3 values and vBMD values elsewhere in the spine, independent of age. The proposed cut-off values for the cervicothoracic spine therefore may allow the determination of low bone mass even in clinical cases where only parts of the spine are imaged. KEY POINTS: vBMD of all cervicothoracic vertebrae showed strong correlation with lumbar vertebrae (L1-L3), with a median Pearson's correlation coefficient of r = 0.87 (range: rC2 = 0.76 to rT12 = 0.96). The correlation coefficients were significantly lower (p < 0.0001) without excluding fractured and moderate to severely degenerated vertebrae, median r = 0.82 (range: rC2 = 0.69 to rT12 = 0.93). We postulate that trabecular vBMD < 200 mg/ml for the cervical spine and < 100 mg/ml for the thoracic spine are strong indicators of osteoporosis, similar to < 80 mg/ml at the lumbar spine.


Asunto(s)
Enfermedades Óseas Metabólicas , Fracturas Óseas , Vértebras Lumbares , Osteoporosis , Absorciometría de Fotón/métodos , Adulto , Densidad Ósea , Enfermedades Óseas Metabólicas/diagnóstico por imagen , Femenino , Humanos , Vértebras Lumbares/diagnóstico por imagen , Región Lumbosacra , Masculino , Osteoporosis/diagnóstico por imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
18.
Cereb Cortex ; 31(7): 3426-3434, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33676369

RESUMEN

Younger age at first exposure (AFE) to repetitive head impacts while playing American football increases the risk for later-life neuropsychological symptoms and brain alterations. However, it is not known whether AFE is associated with cortical thickness in American football players. Sixty-three former professional National Football League players (55.5 ± 7.7 years) with cognitive, behavioral, and mood symptoms underwent neuroimaging and neuropsychological testing. First, the association between cortical thickness and AFE was tested. Second, the relationship between clusters of decreased cortical thickness and verbal and visual memory, and composite measures of mood/behavior and attention/psychomotor speed was assessed. AFE was positively correlated with cortical thickness in the right superior frontal cortex (cluster-wise P value [CWP] = 0.0006), the left parietal cortex (CWP = 0.0003), and the occipital cortices (right: CWP = 0.0023; left: CWP = 0.0008). A positive correlation was found between cortical thickness of the right superior frontal cortex and verbal memory (R = 0.333, P = 0.019), and the right occipital cortex and visual memory (R = 0.360, P = 0.012). In conclusion, our results suggest an association between younger AFE and decreased cortical thickness, which in turn is associated with worse neuropsychological performance. Furthermore, an association between younger AFE and signs of neurodegeneration later in life in symptomatic former American football players seems likely.


Asunto(s)
Atletas , Grosor de la Corteza Cerebral , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Encefalopatía Traumática Crónica/diagnóstico por imagen , Fútbol Americano , Adulto , Afecto/fisiología , Factores de Edad , Anciano , Atención/fisiología , Lesiones Traumáticas del Encéfalo/fisiopatología , Corteza Cerebral/patología , Encefalopatía Traumática Crónica/fisiopatología , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria/fisiología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Occipital/patología , Tamaño de los Órganos , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/patología , Desempeño Psicomotor/fisiología
19.
Eur Spine J ; 31(7): 1866-1872, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35441890

RESUMEN

PURPOSE: The composition of the subchondral bone marrow and cartilage endplate (CEP) could affect intervertebral disc health by influencing vertebral perfusion and nutrient diffusion. However, the relative contributions of these factors to disc degeneration in patients with chronic low back pain (cLBP) have not been quantified. The goal of this study was to use compositional biomarkers derived from quantitative MRI to establish how CEP composition (surrogate for permeability) and vertebral bone marrow fat fraction (BMFF, surrogate for perfusion) relate to disc degeneration. METHODS: MRI data from 60 patients with cLBP were included in this prospective observational study (28 female, 32 male; age = 40.0 ± 11.9 years, 19-65 [mean ± SD, min-max]). Ultra-short echo-time MRI was used to calculate CEP T2* relaxation times (reflecting biochemical composition), water-fat MRI was used to calculate vertebral BMFF, and T1ρ MRI was used to calculate T1ρ relaxation times in the nucleus pulposus (NP T1ρ, reflecting proteoglycan content and degenerative grade). Univariate linear regression was used to assess the independent effects of CEP T2* and vertebral BMFF on NP T1ρ. Mixed effects multivariable linear regression accounting for age, sex, and BMI was used to assess the combined relationship between variables. RESULTS: CEP T2* and vertebral BMFF were independently associated with NP T1ρ (p = 0.003 and 0.0001, respectively). After adjusting for age, sex, and BMI, NP T1ρ remained significantly associated with CEP T2* (p = 0.0001) but not vertebral BMFF (p = 0.43). CONCLUSION: Poor CEP composition plays a significant role in disc degeneration severity and can affect disc health both with and without deficits in vertebral perfusion.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Dolor de la Región Lumbar , Adulto , Médula Ósea/diagnóstico por imagen , Cartílago , Femenino , Humanos , Disco Intervertebral/diagnóstico por imagen , Degeneración del Disco Intervertebral/complicaciones , Degeneración del Disco Intervertebral/diagnóstico por imagen , Dolor de la Región Lumbar/diagnóstico por imagen , Dolor de la Región Lumbar/etiología , Vértebras Lumbares/química , Vértebras Lumbares/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
20.
Neuroimage ; 229: 117731, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33454411

RESUMEN

Brain atlases and templates are at the heart of neuroimaging analyses, for which they facilitate multimodal registration, enable group comparisons and provide anatomical reference. However, as atlas-based approaches rely on correspondence mapping between images they perform poorly in the presence of structural pathology. Whilst several strategies exist to overcome this problem, their performance is often dependent on the type, size and homogeneity of any lesions present. We therefore propose a new solution, referred to as Virtual Brain Grafting (VBG), which is a fully-automated, open-source workflow to reliably parcellate magnetic resonance imaging (MRI) datasets in the presence of a broad spectrum of focal brain pathologies, including large, bilateral, intra- and extra-axial, heterogeneous lesions with and without mass effect. The core of the VBG approach is the generation of a lesion-free T1-weighted image, which enables further image processing operations that would otherwise fail. Here we validated our solution based on Freesurfer recon-all parcellation in a group of 10 patients with heterogeneous gliomatous lesions, and a realistic synthetic cohort of glioma patients (n = 100) derived from healthy control data and patient data. We demonstrate that VBG outperforms a non-VBG approach assessed qualitatively by expert neuroradiologists and Mann-Whitney U tests to compare corresponding parcellations (real patients U(6,6) = 33, z = 2.738, P < .010, synthetic-patients U(48,48) = 2076, z = 7.336, P < .001). Results were also quantitatively evaluated by comparing mean dice scores from the synthetic-patients using one-way ANOVA (unilateral VBG = 0.894, bilateral VBG = 0.903, and non-VBG = 0.617, P < .001). Additionally, we used linear regression to show the influence of lesion volume, lesion overlap with, and distance from the Freesurfer volumes of interest, on labeling accuracy. VBG may benefit the neuroimaging community by enabling automated state-of-the-art MRI analyses in clinical populations using methods such as FreeSurfer, CAT12, SPM, Connectome Workbench, as well as structural and functional connectomics. To fully maximize its availability, VBG is provided as open software under a Mozilla 2.0 license (https://github.com/KUL-Radneuron/KUL_VBG).


Asunto(s)
Mapeo Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Realidad Virtual , Adolescente , Adulto , Anciano , Encéfalo/fisiopatología , Mapeo Encefálico/tendencias , Neoplasias Encefálicas/fisiopatología , Conectoma/métodos , Conectoma/tendencias , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/tendencias , Imagen por Resonancia Magnética/tendencias , Masculino , Persona de Mediana Edad , Flujo de Trabajo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA