Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1394704, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38798956

RESUMEN

Genetically modified (GM) crops that have been engineered to express transgenes have been in commercial use since 1995 and are annually grown on 200 million hectares globally. These crops have provided documented benefits to food security, rural economies, and the environment, with no substantiated case of food, feed, or environmental harm attributable to cultivation or consumption. Despite this extensive history of advantages and safety, the level of regulatory scrutiny has continually increased, placing undue burdens on regulators, developers, and society, while reinforcing consumer distrust of the technology. CropLife International held a workshop at the 16th International Society of Biosafety Research (ISBR) Symposium to examine the scientific basis for modernizing global regulatory frameworks for GM crops. Participants represented a spectrum of global stakeholders, including academic researchers, GM crop developers, regulatory consultants, and regulators. Concurrently examining the considerations of food and feed safety, along with environmental safety, for GM crops, the workshop presented recommendations for a core set of data that should always be considered, and supplementary (i.e., conditional) data that would be warranted only on a case-by-case basis to address specific plausible hypotheses of harm. Then, using a case-study involving a hypothetical GM maize event expressing two familiar traits (insect protection and herbicide tolerance), participants were asked to consider these recommendations and discuss if any additional data might be warranted to support a science-based risk assessment or for regulatory decision-making. The discussions during the workshop highlighted that the set of data to address the food, feed, and environmental safety of the hypothetical GM maize, in relation to a conventional comparator, could be modernized compared to current global regulatory requirements. If these scientific approaches to modernize data packages for GM crop regulation were adopted globally, GM crops could be commercialized in a more timely manner, thereby enabling development of more diverse GM traits to benefit growers, consumers, and the environment.

2.
Food Chem Toxicol ; 124: 168-181, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30465900

RESUMEN

The omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are recognized for their health-promoting qualities. Marine fish and fish oil currently provide the main sources of EPA and DHA for human consumption. An alternative plant-based source of EPA and DHA is provided by EPA + DHA canola event LBFLFK (LBFLFK). A comparative analysis and a 28-day toxicity study assessed the safety of LBFLFK refined, bleached, and deodorized (RBD) oil. Thirty-one different commercially-obtained fat and oil samples were tested, and principal component analysis showed that the overall fatty acid profile of LBFLFK RBD oil was most similar to Mortierella alpina oil and salmon flesh. Samples with the fewest differences in the presence or absence of individual fatty acids compared to LBFLFK RBD oil were menhaden oil and some other fish oils. In a 28-day toxicity study, LBFLFK RBD oil was administered by oral gavage to male and female Wistar rats. No signs of toxicity were evident and no adverse effects were noted in clinical observations, clinical pathology, or histopathology. Overall, these studies support the safety of LBFLFK RBD oil as a source of EPA and DHA for human consumption.


Asunto(s)
Ácidos Docosahexaenoicos/toxicidad , Ácido Eicosapentaenoico/toxicidad , Inocuidad de los Alimentos , Aceite de Brassica napus/toxicidad , Animales , Análisis Químico de la Sangre , Peso Corporal/efectos de los fármacos , Bovinos , Pollos , Decapodiformes , Ácidos Docosahexaenoicos/análisis , Ácido Eicosapentaenoico/análisis , Femenino , Aceites de Pescado/análisis , Peces , Inocuidad de los Alimentos/métodos , Cabras , Masculino , Mortierella , Aceite de Brassica napus/análisis , Ratas Wistar , Medición de Riesgo , Urinálisis
3.
BMC Plant Biol ; 7: 18, 2007 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-17411438

RESUMEN

BACKGROUND: AtNHX1, the most abundant vacuolar Na+/H+ antiporter in Arabidopsis thaliana, mediates the transport of Na+ and K+ into the vacuole, influencing plant development and contributing to salt tolerance. In this report, microarray expression profiles of wild type plants, a T-DNA insertion knockout mutant of AtNHX1 (nhx1), and a 'rescued' line (NHX1::nhx1) were exposed to both short (12 h and 48 h) and long (one and two weeks) durations of a non-lethal salt stress to identify key gene transcripts associated with the salt response that are influenced by AtNHX1. RESULTS: 147 transcripts showed both salt responsiveness and a significant influence of AtNHX1. Fifty-seven of these genes showed an influence of the antiporter across all salt treatments, while the remaining genes were influenced as a result of a particular duration of salt stress. Most (69%) of the genes were up-regulated in the absence of AtNHX1, with the exception of transcripts encoding proteins involved with metabolic and energy processes that were mostly down-regulated. CONCLUSION: While part of the AtNHX1-influenced transcripts were unclassified, other transcripts with known or putative roles showed the importance of AtNHX1 to key cellular processes that were not necessarily limited to the salt stress response; namely calcium signaling, sulfur metabolism, cell structure and cell growth, as well as vesicular trafficking and protein processing. Only a small number of other salt-responsive membrane transporter transcripts appeared significantly influenced by AtNHX1.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/fisiología , Regulación de la Expresión Génica de las Plantas , Cloruro de Sodio/farmacología , Intercambiadores de Sodio-Hidrógeno/fisiología , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proliferación Celular , Pared Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Mutación , Transporte de Proteínas , ARN Mensajero/metabolismo , Transducción de Señal , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Azufre/metabolismo
4.
Biol Direct ; 1: 27, 2006 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16959036

RESUMEN

BACKGROUND: DNA microarrays are a powerful technology that can provide a wealth of gene expression data for disease studies, drug development, and a wide scope of other investigations. Because of the large volume and inherent variability of DNA microarray data, many new statistical methods have been developed for evaluating the significance of the observed differences in gene expression. However, until now little attention has been given to the characterization of dispersion of DNA microarray data. RESULTS: Here we examine the expression data obtained from 682 Affymetrix GeneChips with 22 different types and we demonstrate that the Gaussian (normal) frequency distribution is characteristic for the variability of gene expression values. However, typically 5 to 15% of the samples deviate from normality. Furthermore, it is shown that the frequency distributions of the difference of expression in subsets of ordered, consecutive pairs of genes (consecutive samples) in pair-wise comparisons of replicate experiments are also normal. We describe a consecutive sampling method, which is employed to calculate the characteristic function approximating standard deviation and show that the standard deviation derived from the consecutive samples is equivalent to the standard deviation obtained from individual genes. Finally, we determine the boundaries of probability intervals and demonstrate that the coefficients defining the intervals are independent of sample characteristics, variability of data, laboratory conditions and type of chips. These coefficients are very closely correlated with Student's t-distribution. CONCLUSION: In this study we ascertained that the non-systematic variations possess Gaussian distribution, determined the probability intervals and demonstrated that the K(alpha) coefficients defining these intervals are invariant; these coefficients offer a convenient universal measure of dispersion of data. The fact that the K(alpha) distributions are so close to t-distribution and independent of conditions and type of arrays suggests that the quantitative data provided by Affymetrix technology give "true" representation of physical processes, involved in measurement of RNA abundance. REVIEWERS: This article was reviewed by Yoav Gilad (nominated by Doron Lancet), Sach Mukherjee (nominated by Sandrine Dudoit) and Amir Niknejad and Shmuel Friedland (nominated by Neil Smalheiser).

5.
Proc Natl Acad Sci U S A ; 102(44): 16107-12, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16249341

RESUMEN

The selective movement of ions between intracellular compartments is fundamental for eukaryotes. Arabidopsis thaliana Na(+)/H(+) exchanger 1 (AtNHX1), the most abundant vacuolar Na(+)/H(+) antiporter in A. thaliana, has important roles affecting the maintenance of cellular pH, ion homeostasis, and the regulation of protein trafficking. Previously, we have shown that the AtNHX1 C-terminal hydrophilic region localized in the vacuolar lumen plays an important role in regulating the antiporter's activity. Here, we have identified A. thaliana calmodulin-like protein 15 (AtCaM15), which interacts with the AtNHX1 C terminus. When expressed in yeast, AtCaM15 is localized in the vacuolar lumen. The transient expression of AtCaM15 in Arabidopsis leaf protoplasts showed that AtCaM15 is present in the central vacuole. The binding of AtCaM15 to AtNHX1 was Ca(2+)- and pH-dependent and decreased with increasing pH values. Our results also show that the binding of AtCaM15 to AtNHX1 modified the Na(+)/K(+) selectivity of the antiporter, decreasing its Na(+)/H(+) exchange activity. Taken together, the presence of a vacuolar calmodulin-like protein acting on the vacuolar-localized AtNHX1 C terminus in a Ca(2+)- pH-dependent manner suggests the presence of signaling entities acting within the vacuole.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Calmodulina/fisiología , Proteínas de Transporte de Catión/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Sitios de Unión , Calcio/farmacología , Calmodulina/metabolismo , Clonación Molecular , Concentración de Iones de Hidrógeno , Especificidad por Sustrato , Vacuolas , Levaduras/genética
6.
Plant J ; 40(5): 752-71, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15546358

RESUMEN

AtNHX1, a vacuolar cation/proton antiporter of Arabidopsis, plays an important role in salt tolerance, ion homeostasis and development. We used the T-DNA insertional mutant of AtNHX1 (nhx1 plants) and Affymetrix ATH1 DNA arrays to assess differences in transcriptional profiles and further characterize the roles of a vacuolar cation/proton antiporter. Mature, soil-grown plants were used in this study to approximate typical physiological growing conditions. A comparison of plants grown in the absence of salt stress yielded many transcripts that were affected by the absence of the AtNHX1 vacuolar antiporter. Furthermore, changes in gene expression due to a non-lethal salt stress (100 mm NaCl) in the nhx1 plants were significantly different from the changes seen in wild-type plants. The nhx1 transcriptome was differentially affected when the plants were grown in the absence or presence of salt. In conclusion, in addition to the known role(s) of AtNHX1 on ion homeostasis, the vacuolar cation/proton antiporter plays a significant role in intracellular vesicular trafficking, protein targeting, and other cellular processes.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Regulación hacia Abajo , Análisis por Micromatrices/métodos , Mutación , Presión Osmótica , Transcripción Genética , Regulación hacia Arriba , Vacuolas/metabolismo
7.
Plant J ; 36(2): 229-39, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14535887

RESUMEN

The function of vacuolar Na+/H+ antiporter(s) in plants has been studied primarily in the context of salinity tolerance. By facilitating the accumulation of Na+ away from the cytosol, plant cells can avert ion toxicity and also utilize vacuolar Na+ as osmoticum to maintain turgor. As many genes encoding these antiporters have been cloned from salt-sensitive plants, it is likely that they function in some capacity other than salinity tolerance. The wide expression pattern of Arabidopsis thaliana sodium proton exchanger 1 (AtNHX1) in this study supports this hypothesis. Here, we report the isolation of a T-DNA insertional mutant of AtNHX1, a vacuolar Na+/H+ antiporter in Arabidopsis. Vacuoles isolated from leaves of the nhx1 plants had a much lower Na+/H+ and K+/H+ exchange activity. nhx1 plants also showed an altered leaf development, with reduction in the frequency of large epidermal cells and a reduction in overall leaf area compared to wild-type plants. The overexpression of AtNHX1 in the nhx1 background complemented these phenotypes. In the presence of NaCl, nhx1 seedling establishment was impaired. These results place AtNHX1 as the dominant K+ and Na+/H+ antiporter in leaf vacuoles in Arabidopsis and also suggest that its contribution to ion homeostasis is important for not only salinity tolerance but development as well.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Intercambiadores de Sodio-Hidrógeno/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Prueba de Complementación Genética , Mutagénesis Insercional , Epidermis de la Planta/genética , Epidermis de la Planta/fisiología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Intercambiadores de Sodio-Hidrógeno/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA