Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 578(7795): 386-391, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32042171

RESUMEN

Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales1-3. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation4-7. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters8,9, multilayer mirrors10 and manipulation of the driving field11. However, none of these approaches allows the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free-electron lasers, by contrast, deliver femtosecond, extreme-ultraviolet and X-ray pulses with energies ranging from tens of microjoules to a few millijoules12,13. Recent experiments have shown that they can generate subfemtosecond spikes, but with temporal characteristics that change shot-to-shot14-16. Here we report reproducible generation of high-energy (microjoule level) attosecond waveforms using a seeded free-electron laser17. We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with an approach for its temporal reconstruction. The results presented here open the way to performing attosecond time-resolved experiments with free-electron lasers.

2.
Phys Rev Lett ; 131(4): 045001, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37566861

RESUMEN

We demonstrate the generation of extreme-ultraviolet (XUV) free-electron laser (FEL) pulses with time-dependent polarization. To achieve polarization modulation on a femtosecond timescale, we combine two mutually delayed counterrotating circularly polarized subpulses from two cross-polarized undulators. The polarization profile of the pulses is probed by angle-resolved photoemission and above-threshold ionization of helium; the results agree with solutions of the time-dependent Schrödinger equation. The stability limit of the scheme is mainly set by electron-beam energy fluctuations, however, at a level that will not compromise experiments in the XUV. Our results demonstrate the potential to improve the resolution and element selectivity of methods based on polarization shaping and may lead to the development of new coherent control schemes for probing and manipulating core electrons in matter.

3.
Phys Rev Lett ; 128(15): 157205, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35499884

RESUMEN

Triggering and switching magnetic moments is of key importance for applications ranging from spintronics to quantum information. A noninvasive ultrafast control at the nanoscale is, however, an open challenge. Here, we propose a novel laser-based scheme for generating atomic-scale charge current loops within femtoseconds. The associated orbital magnetic moments remain ferromagnetically aligned after the laser pulses have ceased and are localized within an area that is tunable via laser parameters and can be chosen to be well below the diffraction limit of the driving laser field. The scheme relies on tuning the phase, polarization, and intensities of two copropagating Gaussian and vortex laser pulses, allowing us to control the spatial extent, direction, and strength of the atomic-scale charge current loops induced in the irradiated sample upon photon absorption. In the experiment we used He atoms driven by an ultraviolet and infrared vortex-beam laser pulses to generate current-carrying Rydberg states and test for the generated magnetic moments via dichroic effects in photoemission. Ab initio quantum dynamic simulations and analysis confirm the proposed scenario and provide a quantitative estimate of the generated local moments.

4.
J Synchrotron Radiat ; 26(Pt 5): 1523-1538, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31490140

RESUMEN

Laser-slicing at a diffraction-limited storage ring light source in the soft X-ray region is investigated with theoretical and numerical modelling. It turns out that the slicing efficiency is favoured by the ultra-low beam emittance, and that slicing can be implemented without interference to the standard multi-bunch operation. Spatial and spectral separation of the sub-picosecond radiation pulse from a hundreds of picosecond-long background is achieved by virtue of 1:1 imaging of the radiation source. The spectral separation is enhanced when the radiator is a transverse gradient undulator. The proposed configuration applied to the Elettra 2.0 six-bend achromatic lattice envisages total slicing efficiency as high as 10-7, one order of magnitude larger than the demonstrated state-of-the-art, at the expense of pulse durations as long as 0.4 ps FWHM and average laser power as high as ∼40 W.

5.
Phys Rev Lett ; 123(21): 213904, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31809175

RESUMEN

Intense, mutually coherent beams of multiharmonic extreme ultraviolet light can now be created using seeded free-electron lasers, and the phase difference between harmonics can be tuned with attosecond accuracy. However, the absolute value of the phase is generally not determined. We present a method for determining precisely the absolute phase relationship of a fundamental wavelength and its second harmonic, as well as the amplitude ratio. Only a few easily calculated theoretical parameters are required in addition to the experimental data.

6.
Opt Express ; 21(19): 22728-41, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-24104160

RESUMEN

We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments.

7.
Phys Rev Lett ; 110(6): 064801, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23432255

RESUMEN

We demonstrate the possibility of running a single-pass free electron laser (FEL) in a dynamical regime, which can be exploited to perform two-color pump-probe experiments in the vacuum ultraviolet or x-ray domain, using the free-electron laser emission both as a pump and as a probe. The studied regime is induced by triggering the free-electron laser process with a powerful laser pulse, carrying a significant and adjustable frequency chirp. As a result, the output FEL radiation is split in two pulses, separated in time (as previously observed by different authors), and having different central wavelengths. We show that both the spectral and temporal distances between FEL pulses can be independently controlled. We also provide a theoretical description of this phenomenon, which is found in good agreement with experiments performed on the FERMI@Elettra free-electron laser.

8.
J Phys Chem Lett ; 13(36): 8470-8476, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36054027

RESUMEN

Femtosecond extreme ultraviolet wave packet interferometry (XUV-WPI) was applied to study resonant interatomic Coulombic decay (ICD) in the HeNe dimer. The high demands on phase stability and sensitivity for vibronic XUV-WPI of molecular-beam targets are met using an XUV phase-cycling scheme. The detected quantum interferences exhibit vibronic dephasing and rephasing signatures along with an ultrafast decoherence assigned to the ICD process. A Fourier analysis reveals the molecular absorption spectrum with high resolution. The demonstrated experiment shows a promising route for the real-time analysis of ultrafast ICD processes with both high temporal and high spectral resolution.

9.
Nat Commun ; 11(1): 883, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060288

RESUMEN

The recent development of ultrafast extreme ultraviolet (XUV) coherent light sources bears great potential for a better understanding of the structure and dynamics of matter. Promising routes are advanced coherent control and nonlinear spectroscopy schemes in the XUV energy range, yielding unprecedented spatial and temporal resolution. However, their implementation has been hampered by the experimental challenge of generating XUV pulse sequences with precisely controlled timing and phase properties. In particular, direct control and manipulation of the phase of individual pulses within an XUV pulse sequence opens exciting possibilities for coherent control and multidimensional spectroscopy, but has not been accomplished. Here, we overcome these constraints in a highly time-stabilized and phase-modulated XUV-pump, XUV-probe experiment, which directly probes the evolution and dephasing of an inner subshell electronic coherence. This approach, avoiding any XUV optics for direct pulse manipulation, opens up extensive applications of advanced nonlinear optics and spectroscopy at XUV wavelengths.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA