Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ann Oncol ; 34(9): 813-825, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37330052

RESUMEN

BACKGROUND: The isolation of cell-free DNA (cfDNA) from the bloodstream can be used to detect and analyze somatic alterations in circulating tumor DNA (ctDNA), and multiple cfDNA-targeted sequencing panels are now commercially available for Food and Drug Administration (FDA)-approved biomarker indications to guide treatment. More recently, cfDNA fragmentation patterns have emerged as a tool to infer epigenomic and transcriptomic information. However, most of these analyses used whole-genome sequencing, which is insufficient to identify FDA-approved biomarker indications in a cost-effective manner. PATIENTS AND METHODS: We used machine learning models of fragmentation patterns at the first coding exon in standard targeted cancer gene cfDNA sequencing panels to distinguish between cancer and non-cancer patients, as well as the specific tumor type and subtype. We assessed this approach in two independent cohorts: a published cohort from GRAIL (breast, lung, and prostate cancers, non-cancer, n = 198) and an institutional cohort from the University of Wisconsin (UW; breast, lung, prostate, bladder cancers, n = 320). Each cohort was split 70%/30% into training and validation sets. RESULTS: In the UW cohort, training cross-validated accuracy was 82.1%, and accuracy in the independent validation cohort was 86.6% despite a median ctDNA fraction of only 0.06. In the GRAIL cohort, to assess how this approach performs in very low ctDNA fractions, training and independent validation were split based on ctDNA fraction. Training cross-validated accuracy was 80.6%, and accuracy in the independent validation cohort was 76.3%. In the validation cohort where the ctDNA fractions were all <0.05 and as low as 0.0003, the cancer versus non-cancer area under the curve was 0.99. CONCLUSIONS: To our knowledge, this is the first study to demonstrate that sequencing from targeted cfDNA panels can be utilized to analyze fragmentation patterns to classify cancer types, dramatically expanding the potential capabilities of existing clinically used panels at minimal additional cost.


Asunto(s)
Ácidos Nucleicos Libres de Células , ADN Tumoral Circulante , Neoplasias de la Próstata , Masculino , Humanos , ADN Tumoral Circulante/genética , Mutación , Neoplasias de la Próstata/genética , Ácidos Nucleicos Libres de Células/genética , Perfilación de la Expresión Génica , Biomarcadores de Tumor/genética
2.
Biochemistry ; 40(24): 7005-16, 2001 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-11401544

RESUMEN

The ribonucleoprotein enzyme telomerase adds telomeric repeats to the ends of linear chromosomes. The Tetrahymena telomerase reverse transcriptase (TERT) protein and the telomerase RNA can be reconstituted into an active complex in vitro in rabbit reticulocyte lysates. We have probed the structure of the telomerase RNA in the reconstituted complex with RNases T1 and V1. Upon TERT binding to the RNA, sites of both protection and enhancement of cleavage were observed, suggesting potential protein-binding sites and conformational changes in the RNA. Especially prominent was a large region of RNase V1 protection in stem-loop IV. A number of loop IV mutants still bound TERT but showed drastic decreases in the level of telomerase activity and the loss of protein-dependent folding of the pseudoknot region of the telomerase RNA. The telomerase activity defect and the misfolding of the pseudoknot were partially separable, leading to the proposal of two functions for stem-loop IV: to aid in the folding of the pseudoknot and to function more directly in the active site of telomerase. Thus an RNA element far from the template makes a major contribution to Tetrahymena telomerase enzyme activity.


Asunto(s)
Conformación de Ácido Nucleico , ARN Protozoario/metabolismo , Telomerasa/metabolismo , Tetrahymena thermophila/enzimología , Animales , Secuencia de Bases , Sitios de Unión/genética , Proteínas de Unión al ADN , Nucleótidos de Desoxiguanina/metabolismo , Endorribonucleasas/metabolismo , Activación Enzimática/genética , Datos de Secuencia Molecular , ARN/metabolismo , ARN Protozoario/genética , Conejos , Eliminación de Secuencia , Telomerasa/genética , Moldes Genéticos , Tetrahymena thermophila/genética , Nucleótidos de Timina/metabolismo
3.
Proc Natl Acad Sci U S A ; 95(15): 8479-84, 1998 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-9671703

RESUMEN

Telomerase reverse transcriptase (TERT) has been identified as the catalytic subunit of the chromosome end-replicating enzyme in Euplotes, yeasts, and mammals. However, it was not reported among the protein components of purified Tetrahymena telomerase, the first telomerase identified and the most thoroughly studied. It therefore seemed possible that Tetrahymena used an alternative telomerase that lacked a TERT protein. We now report the cloning and sequencing of a Tetrahymena thermophila gene whose encoded protein has the properties expected for a TERT, including large size (133 kDa), basicity (calculated pI = 10.0), and reverse transcriptase sequence motifs with telomerase-specific features. The expression of mRNA from the Tetrahymena TERT gene increases dramatically at 2-5 h after conjugation, preceding de novo addition of telomeres to macronuclear DNA molecules. We also report the cloning and sequencing of the ortholog from Oxytricha trifallax. The Oxytricha macronuclear TERT gene has no introns, whereas that of Tetrahymena has 18 introns. Sequence comparisons reveal a new amino acid sequence motif (CP), conserved among the ciliated protozoan TERTs, and allow refinement of previously identified motifs. A phylogenetic tree of the known TERTs follows the phylogeny of the organisms in which they are found, consistent with an ancient origin rather than recent transposition. The conservation of TERTs among eukaryotes supports the model that telomerase has a conserved core (TERT plus the RNA subunit), with other subunits of the holoenzyme being more variable among species.


Asunto(s)
Oxytricha/enzimología , Telomerasa/genética , Tetrahymena thermophila/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Catálisis , Clonación Molecular , Cartilla de ADN , Regulación Enzimológica de la Expresión Génica , Intrones , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido , Telomerasa/química , Telomerasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA