RESUMEN
Xenotransplantation has the potential to address shortages of organs available for clinical transplantation, but concerns exist regarding potential risks posed by porcine microorganisms and parasites (MP) to the health of human recipients. In this study, a risk-based framework was developed, and expert opinion was elicited to evaluate porcine MP based on swine exposure and risk to human health. Experts identified 255 MP to include in the risk assessment. These were rated by experts for five criteria regarding potential swine exposure in the USA and human health risks. MP were subsequently categorized into three risk mitigation groups according to pre-defined rules: disqualifying porcine MP (due to their pathogenic potential, n = 130); non-disqualifying porcine MP (still relevant to consider for biosecurity or monitoring efforts, n = 40); and alert/watch list (not reported in the USA or MP not in swine, n = 85). Most disqualifying (n = 126) and non-disqualifying (n = 36) porcine MP can effectively be eliminated with high biosecurity programs. This approach supports surveillance and risk mitigation strategies for porcine MP in swine produced for xenotransplantation, such as documentation of freedom from porcine MP, or use of porcine MP screening, monitoring, or elimination options. To the authors' knowledge, this is the first effort to comprehensively identify all relevant porcine MP systematically and transparently evaluate the risk of infection of both donor animals and immunosuppressed human recipients, and the potential health impacts for immunosuppressed human recipients from infected xenotransplantation products from pigs.
Asunto(s)
Parásitos , Animales , Porcinos , Humanos , Trasplante Heterólogo , Testimonio de Experto , Medición de Riesgo , Huésped InmunocomprometidoRESUMEN
BACKGROUND: We established a Source Animal (barrier) Facility (SAF) for generating designated pathogen-free (DPF) pigs to serve as donors of viable organs, tissues, or cells for xenotransplantation into clinical patients. This facility was populated with caesarian derived, colostrum deprived (CDCD) piglets, from sows of conventional-specific (or specified) pathogen-free (SPF) health status in six cohorts over a 10-month period. In all cases, CDCD piglets fulfilled DPF status including negativity for porcine circovirus (PCV), a particularly environmentally robust and difficult to inactivate virus which at the time of SAF population was epidemic in the US commercial swine production industry. Two outbreaks of PCV infection were subsequently detected during sentinel testing. The first occurred several weeks after PCV-negative animals were moved under quarantine from the nursery into an animal holding room. The apparent origin of PCV was newly installed stainless steel penning, which was not sufficiently degreased thereby protecting viral particles from disinfection. The second outbreak was apparently transmitted via employee activities in the Caesarian-section suite adjacent to the barrier facility. In both cases, PCV was contained in the animal holding room where it was diagnosed making a complete facility depopulation-repopulation unnecessary. METHOD: Infectious PCV was eliminated during both outbreaks by the following: euthanizing infected animals, disposing of all removable items from the affected animal holding room, extensive cleaning with detergents and degreasing agents, sterilization of equipment and rooms with chlorine dioxide, vaporized hydrogen peroxide, and potassium peroxymonosulfate, and for the second outbreak also glutaraldehyde/quaternary ammonium. Impact on other barrier animals throughout the process was monitored by frequent PCV diagnostic testing. RESULT: After close monitoring for 6 months indicating PCV absence from all rooms and animals, herd animals were removed from quarantine status. CONCLUSION: Ten years after PCV clearance following the second outbreak, due to strict adherence to biosecurity protocols and based on ongoing sentinel diagnostic monitoring (currently monthly), the herd remains DPF including PCV negative.
Asunto(s)
Infecciones por Circoviridae/prevención & control , Circovirus/patogenicidad , Organismos Libres de Patógenos Específicos , Enfermedades de los Porcinos/prevención & control , Trasplante Heterólogo , Animales , Xenoinjertos/virología , Porcinos , Enfermedades de los Porcinos/virología , Trasplante Heterólogo/instrumentación , Trasplante Heterólogo/métodosRESUMEN
BACKGROUND: During the process of islet isolation, pancreatic enzymes are activated and released, adversely affecting islet survival and function. We hypothesize that the exocrine component of pancreases harvested from pre-weaned juvenile pigs is immature and hence pancreatic tissue from these donors is protected from injury during isolation and prolonged tissue culture. METHODS: Biopsy specimens taken from pancreases harvested from neonatal (5-10 days), pre-weaned juvenile (18-22 days), weaned juvenile (45-60 days), and young adult pigs (>90 days) were fixed and stained with hematoxylin and eosin. Sections were examined under a fluorescent microscope to evaluate exocrine zymogen fluorescence intensity (ZFI) and under an electron microscope to evaluate exocrine zymogen granule density (ZGD). RESULTS: Exocrine content estimation showed significantly lower ZFI and ZGD in juvenile pig pancreases (1.5 ± 0.04 U/µm(2) , ZFI; 1.03 ± 0.07 × 10(3) /100 µm(2) , ZGD) compared to young adult pigs (2.4 ± 0.05U/µm(2) , ZFI; 1.53 ± 0.08 × 10(3) /100 µm(2) ZGD). Islets in juvenile pig pancreases were on average smaller (105.2 ± 11.2 µm) than islets in young adult pigs (192 ± 7.7 µm), but their insulin content was comparable (80.9 ± 2.2% juvenile; 84.2 ± 0.3% young adult, P > 0.05). All data expressed as mean ± SEM. CONCLUSION: Porcine islet xenotransplantation continues to make strides toward utilization in clinical trials of type 1 diabetes. Porcine donor age and weaning status influence the extent of exocrine maturation of the pancreas. Juvenile porcine pancreases may represent an alternative donor source for islet xenotransplantation as their exocrine component is relatively immature; this preserves islet viability during extended tissue culture following isolation.