Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Alzheimers Dement ; 18(2): 307-317, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34151536

RESUMEN

INTRODUCTION: Analysis of sequence data in high-risk pedigrees is a powerful approach to detect rare predisposition variants. METHODS: Rare, shared candidate predisposition variants were identified from exome sequencing 19 Alzheimer's disease (AD)-affected cousin pairs selected from high-risk pedigrees. Variants were further prioritized by risk association in various external datasets. Candidate variants emerging from these analyses were tested for co-segregation to additional affected relatives of the original sequenced pedigree members. RESULTS: AD-affected high-risk cousin pairs contained 564 shared rare variants. Eleven variants spanning 10 genes were prioritized in external datasets: rs201665195 (ABCA7), and rs28933981 (TTR) were previously implicated in AD pathology; rs141402160 (NOTCH3) and rs140914494 (NOTCH3) were previously reported; rs200290640 (PIDD1) and rs199752248 (PIDD1) were present in more than one cousin pair; rs61729902 (SNAP91), rs140129800 (COX6A2, AC026471), and rs191804178 (MUC16) were not present in a longevity cohort; and rs148294193 (PELI3) and rs147599881 (FCHO1) approached significance from analysis of AD-related phenotypes. Three variants were validated via evidence of co-segregation to additional relatives (PELI3, ABCA7, and SNAP91). DISCUSSION: These analyses support ABCA7 and TTR as AD risk genes, expand on previously reported NOTCH3 variant identification, and prioritize seven additional candidate variants.


Asunto(s)
Enfermedad de Alzheimer , Transportadoras de Casetes de Unión a ATP/genética , Enfermedad de Alzheimer/genética , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Longevidad , Proteínas de la Membrana/genética , Linaje
2.
Neurobiol Dis ; 143: 104972, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32574725

RESUMEN

BACKGROUND: Longevity as a phenotype entails living longer than average and typically includes living without chronic age-related diseases. Recently, several common genetic components to longevity have been identified. This study aims to identify additional genetic variants associated with longevity using unique and powerful analyses of pedigrees with a statistical excess of healthy elderly individuals identified in the Utah Population Database (UPDB). METHODS: From an existing biorepository of Utah pedigrees, six independent cousin pairs were selected from four extended pedigrees that exhibited an excess of healthy elderly individuals; whole exome sequencing (WES) was performed on two elderly individuals from each pedigree who were either first cousins or first cousins once removed. Rare (<.01 population frequency) variants shared by at least one elderly cousin pair in a region likely to be identical by descent were identified as candidates. Ingenuity Variant Analysis was used to prioritize putative causal variants based on quality control, frequency, and gain or loss of function. The variant frequency was compared in healthy cohorts and in an Alzheimer's disease cohort. Remaining variants were filtered based on their presence in genes reported to have an effect on the aging process, aging of cells, or the longevity process. Validation of these candidate variants included tests of segregation on other elderly relatives. RESULTS: Fifteen rare candidate genetic variants spanning 17 genes shared within cousins were identified as having passed prioritization criteria. Of those variants, six were present in genes that are known or predicted to affect the aging process: rs78408340 (PAM), rs112892337 (ZFAT), rs61737629 (ESPL1), rs141903485 (CEBPE), rs144369314 (UTP4), and rs61753103 (NUP88 and RABEP1). ESPL1 rs61737629 and CEBPE rs141903485 show additional evidence of segregation with longevity in expanded pedigree analyses (p-values = .001 and .0001, respectively). DISCUSSION: This unique pedigree analysis efficiently identified several novel rare candidate variants that may affect the aging process and added support to seven genes that likely contribute to longevity. Further analyses showed evidence for segregation for two rare variants, ESPL1 rs61737629 and CEBPE rs141903485, in the original longevity pedigrees in which they were initially observed. These candidate genes and variants warrant further investigation.


Asunto(s)
Envejecimiento/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Longevidad/genética , Separasa/genética , Anciano , Femenino , Variación Genética , Genotipo , Humanos , Masculino , Linaje
3.
PLoS Genet ; 10(10): e1004758, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25340798

RESUMEN

Cerebrospinal fluid (CSF) 42 amino acid species of amyloid beta (Aß42) and tau levels are strongly correlated with the presence of Alzheimer's disease (AD) neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes. All analytes were measured using the Rules Based Medicine Human DiscoveryMAP Panel, which includes analytes relevant to several disease-related processes. Data from two independently collected and measured datasets, the Knight Alzheimer's Disease Research Center (ADRC) and Alzheimer's Disease Neuroimaging Initiative (ADNI), were analyzed separately, and combined results were obtained using meta-analysis. We identified genetic associations with CSF levels of 5 proteins (Angiotensin-converting enzyme (ACE), Chemokine (C-C motif) ligand 2 (CCL2), Chemokine (C-C motif) ligand 4 (CCL4), Interleukin 6 receptor (IL6R) and Matrix metalloproteinase-3 (MMP3)) with study-wide significant p-values (p<1.46×10-10) and significant, consistent evidence for association in both the Knight ADRC and the ADNI samples. These proteins are involved in amyloid processing and pro-inflammatory signaling. SNPs associated with ACE, IL6R and MMP3 protein levels are located within the coding regions of the corresponding structural gene. The SNPs associated with CSF levels of CCL4 and CCL2 are located in known chemokine binding proteins. The genetic associations reported here are novel and suggest mechanisms for genetic control of CSF and plasma levels of these disease-related proteins. Significant SNPs in ACE and MMP3 also showed association with AD risk. Our findings suggest that these proteins/pathways may be valuable therapeutic targets for AD. Robust associations in cognitively normal individuals suggest that these SNPs also influence regulation of these proteins more generally and may therefore be relevant to other diseases.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Metaloproteinasa 3 de la Matriz/genética , Renina/genética , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas Sanguíneas/genética , Quimiocina CCL2/genética , Quimiocina CCL4/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Factor de Crecimiento Nervioso/genética , Polimorfismo de Nucleótido Simple , Receptores de Interleucina-6/genética , Receptores de Lipoproteína/genética , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/genética
4.
BMC Bioinformatics ; 17 Suppl 7: 239, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27454357

RESUMEN

BACKGROUND: Analyzing next-generation sequencing data is difficult because datasets are large, second generation sequencing platforms have high error rates, and because each position in the target genome (exome, transcriptome, etc.) is sequenced multiple times. Given these challenges, numerous bioinformatic algorithms have been developed to analyze these data. These algorithms aim to find an appropriate balance between data loss, errors, analysis time, and memory footprint. Typical analysis pipelines require multiple steps. If one or more of these steps is unnecessary, it would significantly decrease compute time and data manipulation to remove the step. One step in many pipelines is PCR duplicate removal, where PCR duplicates arise from multiple PCR products from the same template molecule binding on the flowcell. These are often removed because there is concern they can lead to false positive variant calls. Picard (MarkDuplicates) and SAMTools (rmdup) are the two main softwares used for PCR duplicate removal. RESULTS: Approximately 92 % of the 17+ million variants called were called whether we removed duplicates with Picard or SAMTools, or left the PCR duplicates in the dataset. There were no significant differences between the unique variant sets when comparing the transition/transversion ratios (p = 1.0), percentage of novel variants (p = 0.99), average population frequencies (p = 0.99), and the percentage of protein-changing variants (p = 1.0). Results were similar for variants in the American College of Medical Genetics genes. Genotype concordance between NGS and SNP chips was above 99 % for all genotype groups (e.g., homozygous reference). CONCLUSIONS: Our results suggest that PCR duplicate removal has minimal effect on the accuracy of subsequent variant calls.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Exactitud de los Datos , Genoma Humano , Genómica/métodos , Humanos , Reacción en Cadena de la Polimerasa
5.
BMC Genomics ; 17 Suppl 3: 436, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27357110

RESUMEN

BACKGROUND: Prolactin is a polypeptide hormone secreted by the anterior pituitary gland that plays an essential role in lactation, tissue growth, and suppressing apoptosis to increase cell survival. Prolactin serves as a key player in many life-critical processes, including immune system and reproduction. Prolactin is also found in multiple fluids throughout the body, including plasma and cerebrospinal fluid (CSF). METHODS: In this study, we measured prolactin levels in both plasma and CSF, and performed a genome-wide association study. We then performed meta-analyses using METAL with a significance threshold of p < 5 × 10(-8) and removed SNPs where the direction of the effect was different between the two datasets. RESULTS: We identified 12 SNPs associated with increased prolactin levels in both biological fluids. CONCLUSIONS: Our efforts will help researchers understand how prolactin is regulated in both CSF and plasma, which could be beneficial in research for the immune system and reproduction.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Prolactina/sangre , Prolactina/líquido cefalorraquídeo , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Lineales , Desequilibrio de Ligamiento , Metaanálisis como Asunto , Persona de Mediana Edad , Sulfotransferasas/genética
6.
BMC Genomics ; 17 Suppl 3: 439, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27357282

RESUMEN

BACKGROUND: Prostatic Acid Phosphatase (PAP) is an enzyme that is produced primarily in the prostate and functions as a cell growth regulator and potential tumor suppressor. Understanding the genetic regulation of this enzyme is important because PAP plays an important role in prostate cancer and is expressed in other tissues such as the brain. METHODS: We tested association between 5.8 M SNPs and PAP levels in cerebrospinal fluid across 543 individuals in two datasets using linear regression. We then performed meta-analyses using METAL =with a significance threshold of p < 5 × 10(-8) and removed SNPs where the direction of the effect was different between the two datasets, identifying 289 candidate SNPs that affect PAP cerebrospinal fluid levels. We analyzed each of these SNPs individually and prioritized SNPs that had biologically meaningful functional annotations in wANNOVAR (e.g. non-synonymous, stop gain, 3' UTR, etc.) or had a RegulomeDB score less than 3. RESULTS: Thirteen SNPs met our criteria, suggesting they are candidate causal alleles that underlie ACPP regulation and expression. CONCLUSIONS: Given PAP's expression in the brain and its role as a cell-growth regulator and tumor suppressor, our results have important implications in brain health such as cancer and other brain diseases including neurodegenerative diseases (e.g., Alzheimer's disease and Parkinson's disease) and mental health (e.g., anxiety, depression, and schizophrenia).


Asunto(s)
Fosfatasa Ácida/líquido cefalorraquídeo , Fosfatasa Ácida/genética , Metaanálisis como Asunto , Polimorfismo de Nucleótido Simple , Anciano , Anciano de 80 o más Años , Alelos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Encéfalo/enzimología , Encéfalo/metabolismo , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Regulación Enzimológica de la Expresión Génica , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Modelos Lineales , Persona de Mediana Edad , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Factores de Riesgo
7.
BMC Genomics ; 17 Suppl 3: 437, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27357396

RESUMEN

BACKGROUND: CCL16 is a chemokine predominantly expressed in the liver, but is also found in the blood and brain, and is known to play important roles in immune response and angiogenesis. Little is known about the gene's regulation. METHODS: Here, we test for potential causal SNPs that affect CCL16 protein levels in both blood plasma and cerebrospinal fluid in a genome-wide association study across two datasets. We then use METAL to performed meta-analyses with a significance threshold of p < 5x10(-8). We removed SNPs where the direction of the effect was different between the two datasets. RESULTS: We identify 10 SNPs associated with increased CCL16 protein levels in both biological fluids. CONCLUSIONS: Our results will help understand CCL16's regulation, allowing researchers to better understand the gene's effects on human health.


Asunto(s)
Quimiocinas CC/genética , Estudio de Asociación del Genoma Completo/métodos , Metaanálisis como Asunto , Polimorfismo de Nucleótido Simple , Anciano , Anciano de 80 o más Años , Alelos , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Quimiocinas CC/sangre , Quimiocinas CC/líquido cefalorraquídeo , Regulación de la Expresión Génica , Frecuencia de los Genes , Genotipo , Humanos , Desequilibrio de Ligamiento , Persona de Mediana Edad
8.
Alzheimers Dement ; 12(2): 121-129, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26449541

RESUMEN

INTRODUCTION: Ebbert et al. reported gene-gene interactions between rs11136000-rs670139 (CLU-MS4A4E) and rs3865444-rs670139 (CD33-MS4A4E). We evaluate these interactions in the largest data set for an epistasis study. METHODS: We tested interactions using 3837 cases and 4145 controls from Alzheimer's Disease Genetics Consortium using meta-analyses and permutation analyses. We repeated meta-analyses stratified by apolipoprotein E (APOE) ε4 status, estimated combined odds ratio (OR) and population attributable fraction (cPAF), and explored causal variants. RESULTS: Results support the CLU-MS4A4E interaction and a dominant effect. An association between CLU-MS4A4E and APOE ε4 negative status exists. The estimated synergy factor, OR, and cPAF for rs11136000-rs670139 are 2.23, 2.45, and 8.0, respectively. We identified potential causal variants. DISCUSSION: We replicated the CLU-MS4A4E interaction in a large case-control series and observed APOE ε4 and possible dominant effect. The CLU-MS4A4E OR is higher than any Alzheimer's disease locus except APOE ε4, APP, and TREM2. We estimated an 8% decrease in Alzheimer's disease incidence without CLU-MS4A4E risk alleles and identified potential causal variants.


Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Clusterina/genética , Epistasis Genética , Proteínas de la Membrana/genética , Lectina 3 Similar a Ig de Unión al Ácido Siálico/genética , Alelos , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Factores de Riesgo
9.
PLoS One ; 13(7): e0200202, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29979759

RESUMEN

Bacteriophages are a major force in the evolution of bacteria due to their sheer abundance as well as their ability to infect and kill their hosts and to transfer genetic material. Bacteriophages that infect the Enterobacteriaceae family are of particular interest because this bacterial family contains dangerous animal and plant pathogens. Herein we report the isolation and characterization of two jumbo myovirus Erwinia phages, RisingSun and Joad, collected from apple trees. These two genomes are nearly identical with Joad harboring two additional putative gene products. Despite mass spectrometry data that support the putative annotation, 43% of their gene products have no significant BLASTP hit. These phages are also more closely related to Pseudomonas and Vibrio phages than to published Enterobacteriaceae phages. Of the 140 gene products with a BLASTP hit, 81% and 63% of the closest hits correspond to gene products from Pseudomonas and Vibrio phages, respectively. This relatedness may reflect their ecological niche, rather than the evolutionary history of their host. Despite the presence of over 800 Enterobacteriaceae phages on NCBI, the uniqueness of these two phages highlights the diversity of Enterobacteriaceae phages still to be discovered.


Asunto(s)
Erwinia/virología , Myoviridae/genética , Myoviridae/aislamiento & purificación , Enterobacteriaceae/virología , Genoma Viral , Especificidad del Huésped , Malus/microbiología , Malus/virología , Microscopía Electrónica de Transmisión , Modelos Moleculares , Myoviridae/clasificación , Proteoma/genética , Pseudomonas/virología , Vibrio/virología , Proteínas Virales/química , Proteínas Virales/genética
10.
Health Psychol Open ; 4(2): 2055102917748459, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29379630

RESUMEN

The Opioid Abuse Risk Screener was developed to support well-informed decision-making in opioid analgesic prescribing by extending the breadth of psychiatric risk factors evaluated relative to other non-clinician-administered measures. We examined the preliminary predictive validity of the Opioid Abuse Risk Screener relative to the widely used Screener and Opioid Assessment for Patients with Pain-Revised in predicting aberrant urine drug tests and controlled substance database checks. The Opioid Abuse Risk Screener is significantly different from the Screener and Opioid Assessment for Patients with Pain-Revised in predicting aberrant same-day urine drug tests (Z = 2.912, p = 0.0036) and controlled substance database checks within 1 year of assessment (Z = 3.731, p = 0.0002). Promising preliminary analyses using machine learning methods are also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA