RESUMEN
Recent palaeogenetic studies indicate a highly dynamic history in collared lemmings (Dicrostonyx spp.), with several demographical changes linked to climatic fluctuations that took place during the last glaciation. At the western range margin of D. torquatus, these changes were characterized by a series of local extinctions and recolonizations. However, it is unclear whether this pattern represents a local phenomenon, possibly driven by ecological edge effects, or a global phenomenon that took place across large geographical scales. To address this, we explored the palaeogenetic history of the collared lemming using a next-generation sequencing approach for pooled mitochondrial DNA amplicons. Sequences were obtained from over 300 fossil remains sampled across Eurasia and two sites in North America. We identified five mitochondrial lineages of D. torquatus that succeeded each other through time across Europe and western Russia, indicating a history of repeated population extinctions and recolonizations, most likely from eastern Russia, during the last 50 000 years. The observation of repeated extinctions across such a vast geographical range indicates large-scale changes in the steppe-tundra environment in western Eurasia during the last glaciation. All Holocene samples, from across the species' entire range, belonged to only one of the five mitochondrial lineages. Thus, extant D. torquatus populations only harbour a small fraction of the total genetic diversity that existed across different stages of the Late Pleistocene. In North American samples, haplotypes belonging to both D. groenlandicus and D. richardsoni were recovered from a Late Pleistocene site in south-western Canada. This suggests that D. groenlandicus had a more southern and D. richardsoni a more northern glacial distribution than previously thought. This study provides significant insights into the population dynamics of a small mammal at a large geographical scale and reveals a rather complex demographical history, which could have had bottom-up effects in the Late Pleistocene steppe-tundra ecosystem.
Asunto(s)
Arvicolinae/genética , Extinción Biológica , Variación Genética , Animales , Regiones Árticas , ADN Antiguo/análisis , ADN Mitocondrial/análisis , Europa (Continente) , Fósiles , Pradera , América del Norte , Filogenia , Dinámica Poblacional , Federación de Rusia , Análisis de Secuencia de ADN , TundraRESUMEN
The common practice of resettlement and the development of administrative and ceremonial systems shaped the population landscape of the Andean region under the Inca rule. The area surrounding Coropuna and Solimana volcanoes, in the Arequipa region (Peru), carried a high-density, multiethnic population. We studied the genetic variation among three pre-Columbian populations from three functionally diverse archaeological sites excavated in this region. By analyzing the genetic composition of a large ceremonial center (Acchaymarca), an isolated pastoral settlement (Tompullo 2), and an agricultural settlement characterized by architectural features rare in the region (Puca), we investigated the patterns of population movements and the distribution of genetic diversity. We obtained mitochondrial DNA sequences for 25 individuals and autosomal microsatellite profiles for 20 individuals from Acchaymarca and Puca sites. These were compared with previously published genetic data for Tompullo 2 and other pre-Columbian populations. We found differences among the genetic portraits of the three populations, congruent with the archaeologically described functions and characteristics of the sites. The Acchaymarca population had the highest genetic diversity and possessed the lowest number of unique mtDNA haplotypes. The Tompullo 2 population exhibited the lowest level of genetic diversity. The Puca population was distinct from the other two populations owing to a high frequency of haplogroup A haplotypes, what potentially explains the non-local character of the burial architecture. Our analyses of microsatellite data suggest that gene flow between sites was mostly mediated by females, which is consistent with ethnohistorical knowledge of the social organization of the pre-Columbian communities.
Asunto(s)
Variación Genética/genética , Genética de Población , Indígenas Sudamericanos/genética , Cementerios , ADN Mitocondrial/genética , Femenino , Haplotipos , Migración Humana , Humanos , Masculino , Repeticiones de Microsatélite , Perú , Análisis para Determinación del SexoRESUMEN
BACKGROUND: A detailed genetic study of the pre-Columbian population inhabiting the Tompullo 2 archaeological site (department Arequipa, Peru) was undertaken to resolve the kin relationships between individuals buried in six different chullpas. Kin relationships were an important factor shaping the social organization in the pre-Columbian Andean communities, centering on the ayllu, a group of relatives that shared a common land and responsibilities. The aim of this study was to evaluate whether this Andean model of a social organization had an influence on mortuary practices, in particular to determine whether chullpas served as family graves. RESULTS: The remains of forty-one individuals were analyzed with both uniparental (mtDNA, Y-chromosome) and biparental (autosomal microsatellites) markers. Reproducible HVRI sequences, autosomal and Y chromosomal STR profiles were obtained for 24, 16 and 11 individuals, respectively. Mitochondrial DNA diversity was comparable to that of ancient and contemporary Andean populations. The Tompullo 2 population exhibited the closest relationship with the modern population from the same region. A kinship analysis revealed complex pattern of relations within and between the graves. However mean relatedness coefficients regarding the pairs of individuals buried in the same grave were significantly higher than those regarding pairs buried in different graves. The Y chromosome profiles of 11 males suggest that only members of one male line were buried in the same grave. CONCLUSIONS: Genetic investigation of the population that inhabited Tompullo 2 site shows continuity between pre-Columbian and modern Native Amerindian populations inhabiting the Arequipa region. This suggests that no major demographic processes have influenced the mitochondrial DNA diversity of these populations during the past five hundred years. The kinship analysis involving uni- and biparental markers suggests that the community that inhabited the Tompullo 2 site was organized into extended family groups that were buried in different graves. This finding is in congruence with known models of social organization of Andean communities.
Asunto(s)
Arqueología , ADN/análisis , Familia , Indígenas Sudamericanos/genética , Entierro , ADN Mitocondrial/análisis , Genética de Población , Humanos , Masculino , Repeticiones de Microsatélite/inmunología , PerúRESUMEN
CONTEXT.: Workflow mapping is a tool used to characterize operational processes throughout most industries and to identify non-value-added activities. OBJECTIVE.: To develop a set of workflow mapping tools to compare the sequence and timing of activities, including waiting steps, used by clinical laboratories to process specimens during the preanalytic testing phase. DESIGN.: Laboratories enrolled in this College of American Pathologists Q-Probes study created workflow maps detailing the steps they used to process specimens from the time of sample arrival in the laboratory to the time of sample delivery to chemistry analyzers. Enrollees recorded the sequence and types of steps involved in specimen processing and the time needed to complete each step. RESULTS.: Institution average total specimen processing times (SPTs) and the number of steps required to prepare samples varied widely among institutions. Waiting steps, that is, steps requiring specimens to wait before advancing to the next process step, and specimen centrifugation consumed the greatest amount of processing times for both routine and STAT testing. Routine and STAT testing SPTs were shorter at institutions that used rapid centrifuges to prepare samples. Specimen processes requiring more sample waiting steps and computer entry steps had longer aggregate total process times than those with fewer such steps. CONCLUSIONS.: Aggregate specimen processing times may be shortened by reducing the number of steps involving sample waiting and computer entry activities. Rapid centrifugation is likely to reduce overall average institutional SPTs.
Asunto(s)
Servicios de Laboratorio Clínico , Patología Clínica , Manejo de Especímenes , Flujo de Trabajo , American Medical Association , Eficiencia Organizacional , Humanos , Laboratorios , Patólogos , Factores de Tiempo , Estados UnidosRESUMEN
The total number of bacteria and culturable bacteria in Adélie penguin (Pygoscelis adeliae) guano was determined during 42 days of decomposition in a location adjacent to the rookery in Admiralty Bay, King George Island, Antarctica. Of the culturable bacteria, 72 randomly selected colonies were described using 49 morpho-physiological tests, 27 of which were subsequently considered significant in characterizing and differentiating the isolates. On the basis of the nucleotide sequence of a fragment of the 16S rRNA gene in each of 72 pure isolates, three major phylogenetic groups were identified, namely the Moraxellaceae/Pseudomonadaceae (29 isolates), the Flavobacteriaceae (14), and the Micrococcaceae (29). Grouping of the isolates on the basis of morpho-physiological tests (whether 49 or 27 parameters) showed similar results to those based on 16S rRNA gene sequences. Clusters were characterized by considerable intra-cluster variation in both 16S rRNA gene sequences and morpho-physiological responses. High diversity in abundance and morphometry of total bacterial communities during penguin guano decomposition was supported by image analysis of epifluorescence micrographs. The results indicate that the bacterial community in penguin guano is not only one of the richest in Antarctica, but is extremely diverse, both phylogenetically and morpho-physiologically.