Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Rev ; 123(6): 3237-3298, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36827528

RESUMEN

The synthesis and processing of most thermoplastics and thermoset polymeric materials rely on energy-inefficient and environmentally burdensome manufacturing methods. Frontal polymerization is an attractive, scalable alternative due to its exploitation of polymerization heat that is generally wasted and unutilized. The only external energy needed for frontal polymerization is an initial thermal (or photo) stimulus that locally ignites the reaction. The subsequent reaction exothermicity provides local heating; the transport of this thermal energy to neighboring monomers in either a liquid or gel-like state results in a self-perpetuating reaction zone that provides fully cured thermosets and thermoplastics. Propagation of this polymerization front continues through the unreacted monomer media until either all reactants are consumed or sufficient heat loss stalls further reaction. Several different polymerization mechanisms support frontal processes, including free-radical, cat- or anionic, amine-cure epoxides, and ring-opening metathesis polymerization. The choice of monomer, initiator/catalyst, and additives dictates how fast the polymer front traverses the reactant medium, as well as the maximum temperature achievable. Numerous applications of frontally generated materials exist, ranging from porous substrate reinforcement to fabrication of patterned composites. In this review, we examine in detail the physical and chemical phenomena that govern frontal polymerization, as well as outline the existing applications.

2.
J Am Chem Soc ; 139(43): 15530-15538, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28985061

RESUMEN

The mechanism of the recently reported photocontrolled cationic polymerization of vinyl ethers was investigated using a variety of catalysts and chain-transfer agents (CTAs) as well as diverse spectroscopic and electrochemical analytical techniques. Our study revealed a complex activation step characterized by one-electron oxidation of the CTA. This oxidation is followed by mesolytic cleavage of the resulting radical cation species, which leads to the generation of a reactive cation-this species initiates the polymerization of the vinyl ether monomer-and a dithiocarbamate radical that is likely in equilibrium with the corresponding thiuram disulfide dimer. Reversible addition-fragmentation type degenerative chain transfer contributes to the narrow dispersities and control over chain growth observed under these conditions. Finally, the deactivation step is contingent upon the oxidation of the reduced photocatalyst by the dithiocarbamate radical concomitant with the production of a dithiocarbamate anion that caps the polymer chain end. The fine-tuning of the electronic properties and redox potentials of the photocatalyst in both the excited and the ground states is necessary to obtain a photocontrolled system rather than simply a photoinitiated system. The elucidation of the elementary steps of this process will aid the design of new catalytic systems and their real-world applications.


Asunto(s)
Cationes/química , Polimerizacion/efectos de la radiación , Compuestos de Vinilo/química , Catálisis/efectos de la radiación , Oxidación-Reducción/efectos de los fármacos
3.
ACS Macro Lett ; 11(6): 780-784, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35638608

RESUMEN

Herein, we report the development of a photoredox-initiated frontal ring-opening metathesis polymerization (FROMP) chemical system. We found that a ruthenium-based, bis-N-heterocyclic carbene metathesis precatalyst was activated with 9-mesityl-10-phenylacridindium tetrafluoroborate, copper(II) triflate, and a 455 nm light source. This chemistry was used to initiate the FROMP of dicyclopentadiene; once initiated, the heat released from the polymerization sustained a well-controlled reaction front. Variation in copper or metathesis precatalyst loading yielded front speeds ranging from 0.15 to 0.43 mm s-1 and front temperatures ranging from 140 to 205 °C. While the glass transition temperatures of the resultant polymers are lower than those derived with Grubbs' second-generation catalyst, this chemical system provides extended pot life.


Asunto(s)
Rutenio , Catálisis , Polimerizacion , Polímeros
4.
ACS Macro Lett ; 9(11): 1563-1568, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35617057

RESUMEN

In this work, a simple method is reported for control over initiation in frontal ring-opening metathesis polymerization (FROMP). This noncontact approach uses 375 nm light to excite Grubbs' second-generation catalyst in the presence of a phosphite inhibitor. Photoinitiated FROMP of dicylcopentadiene (DCPD) displays a similar cure profile to that of its thermally initiated counterpart, yielding a robust polymer with high glass transition temperature. Furthermore, this system is applied to enhance reaction rates in conventional ring-closing metathesis reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA