RESUMEN
The orbitofrontal cortex and amygdala collaborate in outcome-guided decision-making through reciprocal projections. While serotonin transporter knockout (SERT-/-) rodents show changes in outcome-guided decision-making, and in orbitofrontal cortex and amygdala neuronal activity, it remains unclear whether SERT genotype modulates orbitofrontal cortex-amygdala synchronization. We trained SERT-/- and SERT+/+ male rats to execute a task requiring to discriminate between two auditory stimuli, one predictive of a reward (CS+) and the other not (CS-), by responding through nose pokes in opposite-side ports. Overall, task acquisition was not influenced by genotype. Next, we simultaneously recorded local field potentials in the orbitofrontal cortex and amygdala of both hemispheres while the rats performed the task. Behaviorally, SERT-/- rats showed a nonsignificant trend for more accurate responses to the CS-. Electrophysiologically, orbitofrontal cortex-amygdala synchronization in the beta and gamma frequency bands during response selection was significantly reduced and associated with decreased hubness and clustering coefficient in both regions in SERT-/- rats compared to SERT+/+ rats. Conversely, theta synchronization at the time of behavioral response in the port associated with reward was similar in both genotypes. Together, our findings reveal the modulation by SERT genotype of the orbitofrontal cortex-amygdala functional connectivity during an auditory discrimination task.
Asunto(s)
Amígdala del Cerebelo , Discriminación en Psicología , Ritmo Gamma , Corteza Prefrontal , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Animales , Masculino , Ratas , Estimulación Acústica , Amígdala del Cerebelo/fisiología , Percepción Auditiva/fisiología , Ritmo beta/fisiología , Discriminación en Psicología/fisiología , Ritmo Gamma/fisiología , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología , Ratas Transgénicas , Recompensa , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/deficienciaRESUMEN
INTRODUCTION: The retina may provide non-invasive, scalable biomarkers for monitoring cerebral neurodegeneration. METHODS: We used cross-sectional data from The Maastricht study (n = 3436; mean age 59.3 years; 48% men; and 21% with type 2 diabetes [the latter oversampled by design]). We evaluated associations of retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer thicknesses with cognitive performance and magnetic resonance imaging indices (global grey and white matter volume, hippocampal volume, whole brain node degree, global efficiency, clustering coefficient, and local efficiency). RESULTS: After adjustment, lower thicknesses of most inner retinal layers were significantly associated with worse cognitive performance, lower grey and white matter volume, lower hippocampal volume, and worse brain white matter network structure assessed from lower whole brain node degree, lower global efficiency, higher clustering coefficient, and higher local efficiency. DISCUSSION: The retina may provide biomarkers that are informative of cerebral neurodegenerative changes in the pathobiology of dementia.
Asunto(s)
Diabetes Mellitus Tipo 2 , Sustancia Blanca , Masculino , Humanos , Persona de Mediana Edad , Femenino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Estudios Transversales , Retina/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Biomarcadores , CogniciónRESUMEN
Vascular ageing is the deterioration of arterial structure and function which occurs naturally with age, and which can be accelerated with disease. Measurements of vascular ageing are emerging as markers of cardiovascular risk, with potential applications in disease diagnosis and prognosis, and for guiding treatments. However, vascular ageing is not yet routinely assessed in clinical practice. A key step towards this is the development of technologies to assess vascular ageing. In this Roadmap, experts discuss several aspects of this process, including: measurement technologies; the development pipeline; clinical applications; and future research directions. The Roadmap summarises the state of the art, outlines the major challenges to overcome, and identifies potential future research directions to address these challenges.
RESUMEN
Importance: Whether neurodegeneration contributes to the early pathobiology of late-life depression remains incompletely understood. Objective: To investigate whether lower retinal nerve fiber layer (RNFL) thickness, a marker of neurodegeneration, is associated with the incidence of clinically relevant depressive symptoms and depressive symptoms over time. Design, Setting, and Participants: This is a population-based cohort study from the Netherlands (The Maastricht Study) with baseline examination between 2010 and 2020 and median (IQR) follow-up of 5.0 (3.0-6.0) years. Participants were recruited from the general population. Individuals with type 2 diabetes were oversampled by design. Data analysis was performed from September 2020 to January 2021. Exposures: RNFL, an index of neurodegeneration, assessed with optical coherence tomography. Main Outcomes and Measures: Depressive symptoms were assessed with the Patient Health Questionnaire (PHQ)-9 (continuous score, 0-27) at baseline and over time via annual assessments. The presence of clinically relevant depressive symptoms was defined as a PHQ-9 score of 10 or higher. Results: We used data from 4934 participants with depressive symptoms over time (mean [SD] age, 59.7 [8.4] years; 2159 women [50.8%]; 870 had type 2 diabetes [20.5%]). Lower RNFL thickness was associated with higher incidence of clinically relevant depressive symptoms (per 1 SD, hazard ratio 1.11; 95% CI, 1.01-1.23) and more depressive symptoms over time (per 1 SD, rate ratio, 1.04; 95% CI, 1.01-1.06), after adjustment for demographic, cardiovascular, and lifestyle factors. Conclusions and Relevance: The findings of this study suggest that lower RNFL thickness is associated with higher incidence of clinically relevant depressive symptoms and more depressive symptoms over time. Hence, neurodegeneration may be associated with the early pathobiology of late-life depression.