RESUMEN
Over 100 million research participants around the world have had research array-based genotyping (GT) or genome sequencing (GS), but only a small fraction of these have been offered return of actionable genomic findings (gRoR). Between 2017 and 2021, we analyzed genomic results from 36,417 participants in the Mass General Brigham Biobank and offered to confirm and return pathogenic and likely pathogenic variants (PLPVs) in 59 genes. Variant verification prior to participant recontact revealed that GT falsely identified PLPVs in 44.9% of samples, and GT failed to identify 72.0% of PLPVs detected in a subset of samples that were also sequenced. GT and GS detected verified PLPVs in 1% and 2.5% of the cohort, respectively. Of 256 participants who were alerted that they carried actionable PLPVs, 37.5% actively or passively declined further disclosure. 76.3% of those carrying PLPVs were unaware that they were carrying the variant, and over half of those met published professional criteria for genetic testing but had never been tested. This gRoR protocol cost approximately $129,000 USD per year in laboratory testing and research staff support, representing $14 per participant whose DNA was analyzed or $3,224 per participant in whom a PLPV was confirmed and disclosed. These data provide logistical details around gRoR that could help other investigators planning to return genomic results.
Asunto(s)
Bancos de Muestras Biológicas , Enfermedad/genética , Variación Genética , Genoma Humano , Genómica , Adulto , Estudios de Cohortes , ADN , Revelación , Deber de Recontacto , Femenino , Investigación Genética , Pruebas Genéticas , Genómica/economía , Genómica/normas , Genómica/tendencias , Humanos , Consentimiento Informado , Masculino , Persona de Mediana Edad , Reproducibilidad de los ResultadosRESUMEN
PURPOSE: Genetic variants at the low end of the penetrance spectrum have historically been challenging to interpret because their high population frequencies exceed the disease prevalence of the associated condition, leading to a lack of clear segregation between the variant and disease. There is currently substantial variation in the classification of these variants, and no formal classification framework has been widely adopted. The Clinical Genome Resource Low Penetrance/Risk Allele Working Group was formed to address these challenges and promote harmonization within the clinical community. METHODS: The work presented here is the product of internal and community Likert-scaled surveys in combination with expert consensus within the Working Group. RESULTS: We formally recognize risk alleles and low-penetrance variants as distinct variant classes from those causing highly penetrant disease that require special considerations regarding their clinical classification and reporting. First, we provide a preferred terminology for these variants. Second, we focus on risk alleles and detail considerations for reviewing relevant studies and present a framework for the classification these variants. Finally, we discuss considerations for clinical reporting of risk alleles. CONCLUSION: These recommendations support harmonized interpretation, classification, and reporting of variants at the low end of the penetrance spectrum.
Asunto(s)
Variación Genética , Humanos , Alelos , Variación Genética/genética , Penetrancia , Frecuencia de los GenesRESUMEN
The Rho-guanine nucleotide exchange factor (RhoGEF) TRIO acts as a key regulator of neuronal migration, axonal outgrowth, axon guidance, and synaptogenesis by activating the GTPase RAC1 and modulating actin cytoskeleton remodeling. Pathogenic variants in TRIO are associated with neurodevelopmental diseases, including intellectual disability (ID) and autism spectrum disorders (ASD). Here, we report the largest international cohort of 24 individuals with confirmed pathogenic missense or nonsense variants in TRIO. The nonsense mutations are spread along the TRIO sequence, and affected individuals show variable neurodevelopmental phenotypes. In contrast, missense variants cluster into two mutational hotspots in the TRIO sequence, one in the seventh spectrin repeat and one in the RAC1-activating GEFD1. Although all individuals in this cohort present with developmental delay and a neuro-behavioral phenotype, individuals with a pathogenic variant in the seventh spectrin repeat have a more severe ID associated with macrocephaly than do most individuals with GEFD1 variants, who display milder ID and microcephaly. Functional studies show that the spectrin and GEFD1 variants cause a TRIO-mediated hyper- or hypo-activation of RAC1, respectively, and we observe a striking correlation between RAC1 activation levels and the head size of the affected individuals. In addition, truncations in TRIO GEFD1 in the vertebrate model X. tropicalis induce defects that are concordant with the human phenotype. This work demonstrates distinct clinical and molecular disorders clustering in the GEFD1 and seventh spectrin repeat domains and highlights the importance of tight control of TRIO-RAC1 signaling in neuronal development.
Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Mutación , Trastornos del Neurodesarrollo/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína de Unión al GTP rac1/metabolismo , Secuencia de Aminoácidos , Estudios de Cohortes , Femenino , Factores de Intercambio de Guanina Nucleótido/química , Células HEK293 , Humanos , Masculino , Fenotipo , Proteínas Serina-Treonina Quinasas/química , Homología de Secuencia de AminoácidoRESUMEN
The All of Us Research Program (AoURP) is a historic effort to accelerate research and improve healthcare by generating and collating data from one million people in the United States. Participants will have the option to receive results from their genome analysis, including actionable findings in 59 gene-disorder pairs for which disorder-associated variants are recommended for return by the American College of Medical Genetics and Genomics. To ensure consistent reporting across the AoURP, in a prelaunch study the four participating clinical laboratories shared all variant classifications in the 59 genes of interest from their internal databases. Of the 11,813 unique variants classified by at least two of the four laboratories, classifications were concordant with regard to reportability for 99.1% (11,711), with only 0.9% (102) having reportability differences. Through variant reassessment, data sharing, and discussion of rationale, participating laboratories resolved all 102 reportable differences. These approaches will be maintained during routine AoU reporting to ensure continuous classification harmonization and consistent reporting within AoURP.
Asunto(s)
Genoma Humano , Salud Poblacional , Pruebas Genéticas/métodos , Variación Genética , Genoma Humano/genética , Genómica/métodos , Humanos , Estados UnidosRESUMEN
MN1 encodes a transcriptional co-regulator without homology to other proteins, previously implicated in acute myeloid leukaemia and development of the palate. Large deletions encompassing MN1 have been reported in individuals with variable neurodevelopmental anomalies and non-specific facial features. We identified a cluster of de novo truncating mutations in MN1 in a cohort of 23 individuals with strikingly similar dysmorphic facial features, especially midface hypoplasia, and intellectual disability with severe expressive language delay. Imaging revealed an atypical form of rhombencephalosynapsis, a distinctive brain malformation characterized by partial or complete loss of the cerebellar vermis with fusion of the cerebellar hemispheres, in 8/10 individuals. Rhombencephalosynapsis has no previously known definitive genetic or environmental causes. Other frequent features included perisylvian polymicrogyria, abnormal posterior clinoid processes and persistent trigeminal artery. MN1 is encoded by only two exons. All mutations, including the recurrent variant p.Arg1295* observed in 8/21 probands, fall in the terminal exon or the extreme 3' region of exon 1, and are therefore predicted to result in escape from nonsense-mediated mRNA decay. This was confirmed in fibroblasts from three individuals. We propose that the condition described here, MN1 C-terminal truncation (MCTT) syndrome, is not due to MN1 haploinsufficiency but rather is the result of dominantly acting C-terminally truncated MN1 protein. Our data show that MN1 plays a critical role in human craniofacial and brain development, and opens the door to understanding the biological mechanisms underlying rhombencephalosynapsis.
Asunto(s)
Anomalías Múltiples/genética , Anomalías Craneofaciales/genética , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Malformaciones del Sistema Nervioso/genética , Transactivadores/genética , Proteínas Supresoras de Tumor/genética , Anomalías Múltiples/diagnóstico por imagen , Adolescente , Arteria Basilar/anomalías , Arteria Basilar/diagnóstico por imagen , Arterias Carótidas/anomalías , Arterias Carótidas/diagnóstico por imagen , Vermis Cerebeloso/anomalías , Vermis Cerebeloso/diagnóstico por imagen , Cerebelo/anomalías , Cerebelo/diagnóstico por imagen , Niño , Preescolar , Estudios de Cohortes , Hibridación Genómica Comparativa , Anomalías Craneofaciales/diagnóstico por imagen , Femenino , Fibroblastos/metabolismo , Humanos , Imagenología Tridimensional , Lactante , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Degradación de ARNm Mediada por Codón sin Sentido , Polimicrogiria/diagnóstico por imagen , Polimicrogiria/genética , RNA-Seq , Reacción en Cadena en Tiempo Real de la Polimerasa , Síndrome , Tomografía Computarizada por Rayos X , Secuenciación del Exoma , Secuenciación Completa del GenomaRESUMEN
Turner syndrome is recognized now as a syndrome familiar not only to pediatricians and pediatric specialists, medical geneticists, adult endocrinologists, and cardiologists, but also increasingly to primary care providers, internal medicine specialists, obstetricians, and reproductive medicine specialists. In addition, the care of women with Turner syndrome may involve social services, and various educational and neuropsychologic therapies. This article focuses on the recognition and management of Turner syndrome from adolescents in transition, through adulthood, and into another transition as older women. It can be viewed as an interpretation of recent international guidelines, complementary to those recommendations, and in some instances, an update. An attempt was made to provide an international perspective. Finally, the women and families who live with Turner syndrome and who inspired several sections, are themselves part of the broad readership that may benefit from this review.
Asunto(s)
Síndrome de Turner/diagnóstico , Síndrome de Turner/terapia , Adolescente , Adulto , Anciano , Niño , Cromosomas Humanos Y/genética , Humanos , Cariotipo , Salud Mental , Persona de Mediana Edad , Fenotipo , Síndrome de Turner/epidemiología , Síndrome de Turner/genética , Adulto JovenRESUMEN
Choosing a route to parenthood can be a difficult decision for individuals with Turner syndrome, who must consider the unlikely possibility of spontaneous pregnancy, the potential need for assisted reproductive technology such as in vitro fertilization (IVF), and the risks of pregnancy-related complications. In addition, there are other options for parenthood, such as surrogacy and adoption. The perspectives of individuals with Turner syndrome regarding routes to parenthood have not been described in the literature, despite thorough investigation into the feasibility and safety of pregnancy in this population. We conducted a novel online survey of 226 individuals with Turner syndrome to assess their interest in parenthood, their perspectives on available routes to parenthood, and the factors that influence their decision-making. One-quarter of the respondents were already parents, including 54.5% who had achieved pregnancy and 45.5% who adopted. Of those who were not parents, 68.5% expressed a desire to become a parent. Overall, participants had the strongest interest in adoption as a route to parenthood. Interest in adoption was significantly associated with fear of pregnancy-related risks to their health and the health of a future child. Participants also reported interest in pregnancy and IVF. Interest in both pregnancy and IVF were significantly associated with a desire to experience pregnancy and to have a biological child. This study provides important insights into the perspective of individuals with Turner syndrome with respect to building a family and serves as a valuable counseling resource for clinicians facilitating patient decision-making about options for parenthood.
RESUMEN
Implementation of polygenic risk scores (PRS) may improve disease prevention and management but poses several challenges: the construction of clinically valid assays, interpretation for individual patients, and the development of clinical workflows and resources to support their use in patient care. For the ongoing Veterans Affairs Genomic Medicine at Veterans Affairs (GenoVA) Study we developed a clinical genotype array-based assay for six published PRS. We used data from 36,423 Mass General Brigham Biobank participants and adjustment for population structure to replicate known PRS-disease associations and published PRS thresholds for a disease odds ratio (OR) of 2 (ranging from 1.75 (95% CI: 1.57-1.95) for type 2 diabetes to 2.38 (95% CI: 2.07-2.73) for breast cancer). After confirming the high performance and robustness of the pipeline for use as a clinical assay for individual patients, we analyzed the first 227 prospective samples from the GenoVA Study and found that the frequency of PRS corresponding to published OR > 2 ranged from 13/227 (5.7%) for colorectal cancer to 23/150 (15.3%) for prostate cancer. In addition to the PRS laboratory report, we developed physician- and patient-oriented informational materials to support decision-making about PRS results. Our work illustrates the generalizable development of a clinical PRS assay for multiple conditions and the technical, reporting and clinical workflow challenges for implementing PRS information in the clinic.
Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Humanos , Masculino , Estudios Prospectivos , Factores de Riesgo , Flujo de TrabajoRESUMEN
Despite numerous clinical series, consistent karyotype-phenotype correlations for Turner syndrome have not been established, although a lower level of 45,X is generally thought to be associated with a milder phenotype. This limits personalized counseling for women with 45,X/46,XX mosaicism. To better understand the phenotypic spectrum associated with various levels of 45,X/46,XX mosaicism, we compared patients evaluated in the Massachusetts General Hospital Turner Syndrome Clinic to determine if cardiac, renal, and thyroid abnormalities correlated with the percentage of 45,X cells present in a peripheral blood karyotype. of the 118 patients included in the study, 78 (66%) patients had non-mosaic 45,X and 40 (34%) patients had varying levels of 45,X/46,XX mosaicism. Patients with ≤70% 45,X compared with those with >70% 45,X had a significantly lower frequency of cardiac and renal anomalies. The presence of hypothyroidism was somewhat lower for the ≤70% 45,X group, but was not statistically significant. Supplemental tissue testing on another tissue type, typically buccal mucosa, was often useful in counseling patients with 45,X mosaicism. Given the modest sample size of patients with varying levels of mosaicism and the variability of Turner syndrome abnormalities, we hope this preliminary study will inspire a multicenter collaboration, which may lead to modification of clinical guidelines. Because several patients with ≤70% 45,X were ascertained from perinatal care referrals, we still advise women with 45,X mosaicism pursuing pregnancy to receive standard Turner syndrome cardiac surveillance. There is an opportunity to personalize counseling and surveillance for patients based on percentage of 45,X cells on chromosome analysis.
Asunto(s)
Trastornos del Desarrollo Sexual 46, XX/genética , Pruebas Genéticas/métodos , Cariotipificación/métodos , Mosaicismo , Fenotipo , Medicina de Precisión/métodos , Síndrome de Turner/genética , Trastornos del Desarrollo Sexual 46, XX/diagnóstico , Células Cultivadas , Femenino , Pruebas Genéticas/normas , Humanos , Cariotipificación/normas , Medicina de Precisión/normas , Síndrome de Turner/diagnósticoRESUMEN
The original version of this Article contained an error in the spelling of the author Laurence Faivre, which was incorrectly given as Laurence Faive. This has now been corrected in both the PDF and HTML versions of the Article.
RESUMEN
The HTML and PDF versions of this Article were updated after publication to remove images of one individual from Figure 1.
RESUMEN
RASA1-related disorders are vascular malformation syndromes characterized by hereditary capillary malformations (CM) with or without arteriovenous malformations (AVM), arteriovenous fistulas (AVF), or Parkes Weber syndrome. The number of cases reported is relatively small; and while the main clinical features are CMs and AVMs/AVFs, the broader phenotypic spectrum caused by variants in the RASA1 gene is still being defined. Here, we report the clinical and molecular findings in 69 unrelated cases with a RASA1 variant identified at ARUP Laboratories. Sanger sequencing and multiplex ligation-dependent probe amplification were primarily used to evaluate RASA1. Several atypical cases were evaluated using next-generation sequencing (NGS) and array-comparative genomic hybridization (aCGH). Sixty individuals had a deleterious RASA1 variant of which 29 were novel. Nine individuals had a variant of uncertain significance. Five large RASA1 deletions were detected, giving an overall deletion/duplication rate of 8.3% (5/60) among positive cases. Most (75.4%) individuals with a RASA1 variant had CMs, and 44.9% had an AVM/AVF. Clinical findings in several cases expand the RASA1 phenotype. Our data suggest that screening for large RASA1 deletions and duplications in this disorder is important and suggest that NGS multi-gene panel testing is beneficial for the molecular diagnosis of cases with complex vascular phenotypes.
Asunto(s)
Malformaciones Arteriovenosas/genética , Capilares/anomalías , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Mancha Vino de Oporto/genética , Proteína Activadora de GTPasa p120/genética , Adolescente , Adulto , Anciano , Malformaciones Arteriovenosas/fisiopatología , Capilares/fisiopatología , Niño , Preescolar , Hibridación Genómica Comparativa , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación , Fenotipo , Mancha Vino de Oporto/fisiopatología , Adulto JovenRESUMEN
Chromatin remodeling is of crucial importance during brain development. Pathogenic alterations of several chromatin remodeling ATPases have been implicated in neurodevelopmental disorders. We describe an index case with a de novo missense mutation in CHD3, identified during whole genome sequencing of a cohort of children with rare speech disorders. To gain a comprehensive view of features associated with disruption of this gene, we use a genotype-driven approach, collecting and characterizing 35 individuals with de novo CHD3 mutations and overlapping phenotypes. Most mutations cluster within the ATPase/helicase domain of the encoded protein. Modeling their impact on the three-dimensional structure demonstrates disturbance of critical binding and interaction motifs. Experimental assays with six of the identified mutations show that a subset directly affects ATPase activity, and all but one yield alterations in chromatin remodeling. We implicate de novo CHD3 mutations in a syndrome characterized by intellectual disability, macrocephaly, and impaired speech and language.