Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 38(5-6): 273-288, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38589034

RESUMEN

Glioblastoma is universally fatal and characterized by frequent chromosomal copy number alterations harboring oncogenes and tumor suppressors. In this study, we analyzed exome-wide human glioblastoma copy number data and found that cytoband 6q27 is an independent poor prognostic marker in multiple data sets. We then combined CRISPR-Cas9 data, human spatial transcriptomic data, and human and mouse RNA sequencing data to nominate PDE10A as a potential haploinsufficient tumor suppressor in the 6q27 region. Mouse glioblastoma modeling using the RCAS/tv-a system confirmed that Pde10a suppression induced an aggressive glioma phenotype in vivo and resistance to temozolomide and radiation therapy in vitro. Cell culture analysis showed that decreased Pde10a expression led to increased PI3K/AKT signaling in a Pten-independent manner, a response blocked by selective PI3K inhibitors. Single-nucleus RNA sequencing from our mouse gliomas in vivo, in combination with cell culture validation, further showed that Pde10a suppression was associated with a proneural-to-mesenchymal transition that exhibited increased cell adhesion and decreased cell migration. Our results indicate that glioblastoma patients harboring PDE10A loss have worse outcomes and potentially increased sensitivity to PI3K inhibition.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Animales , Ratones , Glioblastoma/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Haploinsuficiencia , Glioma/genética , Fosfohidrolasa PTEN/genética , Hidrolasas Diéster Fosfóricas/genética , Línea Celular Tumoral , Neoplasias Encefálicas/genética
2.
J Transl Med ; 22(1): 441, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730481

RESUMEN

Microtubule targeting agents (MTAs) are commonly prescribed to treat cancers and predominantly kill cancer cells in mitosis. Significantly, some MTA-treated cancer cells escape death in mitosis, exit mitosis and become malignant polyploid giant cancer cells (PGCC). Considering the low number of cancer cells undergoing mitosis in tumor tissues, killing them in interphase may represent a favored antitumor approach. We discovered that ST-401, a mild inhibitor of microtubule (MT) assembly, preferentially kills cancer cells in interphase as opposed to mitosis, a cell death mechanism that avoids the development of PGCC. Single cell RNA sequencing identified mRNA transcripts regulated by ST-401, including mRNAs involved in ribosome and mitochondrial functions. Accordingly, ST-401 induces a transient integrated stress response, reduces energy metabolism, and promotes mitochondria fission. This cell response may underly death in interphase and avoid the development of PGCC. Considering that ST-401 is a brain-penetrant MTA, we validated these results in glioblastoma cell lines and found that ST-401 also reduces energy metabolism and promotes mitochondria fission in GBM sensitive lines. Thus, brain-penetrant mild inhibitors of MT assembly, such as ST-401, that induce death in interphase through a previously unanticipated antitumor mechanism represent a potentially transformative new class of therapeutics for the treatment of GBM.


Asunto(s)
Muerte Celular , Células Gigantes , Interfase , Microtúbulos , Poliploidía , Humanos , Interfase/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Línea Celular Tumoral , Muerte Celular/efectos de los fármacos , Células Gigantes/efectos de los fármacos , Células Gigantes/metabolismo , Células Gigantes/patología , Dinámicas Mitocondriales/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/genética , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
3.
Neurobiol Dis ; 180: 106099, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36990366

RESUMEN

Evidence suggests that inhibition of α/ß hydrolase-domain containing 6 (ABHD6) reduces seizures; however, the molecular mechanism of this therapeutic response remains unknown. We discovered that heterozygous expression of Abhd6 (Abhd6+/-) significantly reduced the premature lethality of Scn1a+/- mouse pups, a genetic mouse model of Dravet Syndrome (DS). Both Abhd6+/- mutation and pharmacological inhibition of ABHD6 reduced the duration and incidence of thermally induced seizures in Scn1a+/- pups. Mechanistically, the in vivo anti-seizure response resulting from ABHD6 inhibition is mediated by potentiation of gamma-aminobutyric acid receptors Type-A (GABAAR). Brain slice electrophysiology showed that blocking ABHD6 potentiates extrasynaptic (tonic) GABAAR currents that reduce dentate granule cell excitatory output without affecting synaptic (phasic) GABAAR currents. Our results unravel an unexpected mechanistic link between ABHD6 activity and extrasynaptic GABAAR currents that controls hippocampal hyperexcitability in a genetic mouse model of DS. BRIEF SUMMARY: This study provides the first evidence for a mechanistic link between ABHD6 activity and the control of extrasynaptic GABAAR currents that controls hippocampal hyperexcitability in a genetic mouse model of Dravet Syndrome and can be targeted to dampened seizures.


Asunto(s)
Epilepsias Mioclónicas , Animales , Ratones , Epilepsias Mioclónicas/genética , Neuronas , Ácido gamma-Aminobutírico , Hidrolasas/uso terapéutico , Serina , Canal de Sodio Activado por Voltaje NAV1.1/genética , Monoacilglicerol Lipasas
4.
Eur J Neurosci ; 54(3): 4934-4952, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34216157

RESUMEN

Activation of cannabinoid 1 receptors (CB1 R) modulates multiple behaviours, including exploration, motor coordination and response to psychostimulants. It is known that CB1 R expressed by either excitatory or inhibitory neurons mediates different behavioural responses to CB1 R activation, yet the involvement of CB1 R expressed by medium spiny neurons (MSNs), the neuronal subpopulation that expresses the highest level of CB1 R in the CNS, remains unknown. We report a new genetically modified mouse line that expresses functional CB1 R in MSN on a CB1 R knockout (KO) background (CB1 R(MSN) mice). The absence of cannabimimetic responses measured in CB1 R KO mice was not rescued in CB1 R(MSN) mice, nor was decreased spontaneous locomotion, impaired instrumental behaviour or reduced amphetamine-triggered hyperlocomotion measured in CB1 R KO mice. Significantly, reduced novel environment exploration of an open field and absence of amphetamine sensitization (AS) measured in CB1 R KO mice were fully rescued in CB1 R(MSN) mice. Impaired motor coordination in CB1 R KO mice measured on the Rotarod was partially rescued in CB1 R(MSN) mice. Thus, CB1 R expressed by MSN control exploration, motor coordination, and AS. Our study demonstrates a new functional roles for cell specific CB1 R expression and their causal link in the control of specific behaviors.


Asunto(s)
Anfetamina , Cannabinoides , Cuerpo Estriado , Receptor Cannabinoide CB1 , Anfetamina/farmacología , Animales , Ratones , Ratones Noqueados , Neuronas , Receptor Cannabinoide CB1/genética
5.
Nat Rev Neurosci ; 16(1): 30-42, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25524120

RESUMEN

Ageing is characterized by the progressive impairment of physiological functions and increased risk of developing debilitating disorders, including chronic inflammation and neurodegenerative diseases. These disorders have common molecular mechanisms that can be targeted therapeutically. In the wake of the approval of the first cannabinoid-based drug for the symptomatic treatment of multiple sclerosis, we examine how endocannabinoid (eCB) signalling controls--and is affected by--normal ageing and neuroinflammatory and neurodegenerative disorders. We propose a conceptual framework linking eCB signalling to the control of the cellular and molecular hallmarks of these processes, and categorize the key components of endocannabinoid signalling that may serve as targets for novel therapeutics.


Asunto(s)
Encefalopatías/tratamiento farmacológico , Encefalopatías/metabolismo , Endocannabinoides/metabolismo , Transducción de Señal/fisiología , Envejecimiento , Animales , Encefalopatías/patología , Humanos
6.
Mol Cell ; 48(4): 547-59, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23063527

RESUMEN

The mitogenic and second-messenger signals that promote cell proliferation often proceed through multienzyme complexes. The kinase-anchoring protein Gravin integrates cAMP and calcium/phospholipid signals at the plasma membrane by sequestering protein kinases A and C with G protein-coupled receptors. In this report we define a role for Gravin as a temporal organizer of phosphorylation-dependent protein-protein interactions during mitosis. Mass spectrometry, molecular, and cellular approaches show that CDK1/Cyclin B1 phosphorylates Gravin on threonine 766 to prime the recruitment of the polo-like kinase Plk1 at defined phases of mitosis. Fluorescent live-cell imaging reveals that cells depleted of Gravin exhibit mitotic defects that include protracted prometaphase and misalignment of chromosomes. Moreover, a Gravin T766A phosphosite mutant that is unable to interact with Plk1 negatively impacts cell proliferation. In situ detection of phospho-T766 Gravin in biopsy sections of human glioblastomas suggests that this phosphorylation event might identify malignant neoplasms.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Animales , Proteínas de Ciclo Celular/genética , División Celular , Proliferación Celular , Humanos , Ratones , Mitosis , Fosforilación , Unión Proteica , Células Tumorales Cultivadas , Quinasa Tipo Polo 1
7.
Proc Natl Acad Sci U S A ; 114(42): 11229-11234, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973916

RESUMEN

Worldwide medicinal use of cannabis is rapidly escalating, despite limited evidence of its efficacy from preclinical and clinical studies. Here we show that cannabidiol (CBD) effectively reduced seizures and autistic-like social deficits in a well-validated mouse genetic model of Dravet syndrome (DS), a severe childhood epilepsy disorder caused by loss-of-function mutations in the brain voltage-gated sodium channel NaV1.1. The duration and severity of thermally induced seizures and the frequency of spontaneous seizures were substantially decreased. Treatment with lower doses of CBD also improved autistic-like social interaction deficits in DS mice. Phenotypic rescue was associated with restoration of the excitability of inhibitory interneurons in the hippocampal dentate gyrus, an important area for seizure propagation. Reduced excitability of dentate granule neurons in response to strong depolarizing stimuli was also observed. The beneficial effects of CBD on inhibitory neurotransmission were mimicked and occluded by an antagonist of GPR55, suggesting that therapeutic effects of CBD are mediated through this lipid-activated G protein-coupled receptor. Our results provide critical preclinical evidence supporting treatment of epilepsy and autistic-like behaviors linked to DS with CBD. We also introduce antagonism of GPR55 as a potential therapeutic approach by illustrating its beneficial effects in DS mice. Our study provides essential preclinical evidence needed to build a sound scientific basis for increased medicinal use of CBD.


Asunto(s)
Cannabidiol/uso terapéutico , Epilepsias Mioclónicas/tratamiento farmacológico , Convulsiones/prevención & control , Animales , Compuestos de Azabiciclo , Benzoatos , Cannabidiol/farmacología , Giro Dentado/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Epilepsias Mioclónicas/complicaciones , Epilepsias Mioclónicas/psicología , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Masculino , Ratones , Receptor Cannabinoide CB1/metabolismo , Receptores de Cannabinoides/metabolismo , Convulsiones/etiología , Conducta Social
8.
Glia ; 67(8): 1558-1570, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31058365

RESUMEN

GPR124 is involved in embryonic development and remains expressed by select organs. The importance of GPR124 during development suggests that its aberrant expression might participate in tumor growth. Here we show that both increases and decreases in GPR124 expression in glioblastoma cells reduce cell proliferation by differentially altering the duration mitotic progression. Using mass spectrometry-based proteomics, we discovered that GPR124 interacts with ch-TOG, a known regulator of both microtubule (MT)-plus-end assembly and mitotic progression. Accordingly, changes in GPR124 expression and ch-TOG similarly affect MT assembly measured by real-time microscopy in cells. Our study describes a novel molecular interaction involving GPR124 and ch-TOG at the plasma membrane that controls glioblastoma cell proliferation by modifying MT assembly rates and controlling the progression of distinct phases of mitosis.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Proliferación Celular/fisiología , Glioblastoma/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Encéfalo/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Femenino , Expresión Génica , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad
9.
Neurobiol Dis ; 132: 104607, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31499139

RESUMEN

Huntington's Disease (HD) is a fatal neurodegenerative disease characterized by severe loss of medium spiny neuron (MSN) function and striatal-dependent behaviors. We report that female HdhQ200/200 mice display an earlier onset and more robust deterioration in spontaneous locomotion and motor coordination measured at 8 months of age compared to male HdhQ200/200 mice. Remarkably, HdhQ200/200 mice of both sexes exhibit comparable impaired spontaneous locomotion and motor coordination at 10 months of age and reach moribund stage by 12 months of age, demonstrating reduced life span in this model system. Histopathological analysis revealed enhanced mutant huntingtin protein aggregation in male HdhQ200/200 striatal tissue at 8 months of age compared to female HdhQ200/200. Functional analysis of calcium dynamics in MSNs of female HdhQ200/200 mice using GCaMP6m imaging revealed elevated responses to excitatory cortical-striatal stimulation suggesting increased MSN excitability. Although there was no down-regulation of the expression of common HD biomarkers (DARPP-32, enkephalin and CB1R), we measured a sex-dependent reduction of the astrocytic glutamate transporter, GLT-1, in female HdhQ200/200 mice that was not detected in male HdhQ200/200 mice when compared to respective wild-type littermates. Our study outlines a sex-dependent rapid deterioration of striatal-dependent behaviors occurring in the HdhQ200/200 mouse line that does not involve alterations in the expression of common HD biomarkers and yet includes impaired MSN function.


Asunto(s)
Ataxia , Cuerpo Estriado/metabolismo , Trastornos Neurológicos de la Marcha , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Animales , Astrocitos/metabolismo , Ataxia/genética , Ataxia/metabolismo , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores/metabolismo , Femenino , Trastornos Neurológicos de la Marcha/genética , Trastornos Neurológicos de la Marcha/metabolismo , Proteína Huntingtina/genética , Enfermedad de Huntington/patología , Locomoción/fisiología , Masculino , Ratones , Ratones Transgénicos , Desempeño Psicomotor/fisiología , Caracteres Sexuales
10.
J Pharmacol Exp Ther ; 360(1): 215-224, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27821713

RESUMEN

Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs.


Asunto(s)
Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Cannabidiol/efectos adversos , Cannabidiol/farmacología , Daño del ADN , Glioblastoma/patología , Células-Madre Neurales/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Ratones , Células-Madre Neurales/citología , Transducción de Señal/efectos de los fármacos
11.
J Pharmacol Exp Ther ; 361(2): 219-228, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28196836

RESUMEN

Small molecules that target the adrenergic family of G protein-coupled receptors (GPCRs) show promising therapeutic efficacy for the treatment of various cancers. In this study, we report that human colon cancer cell line SW480 expresses low-density functional α1B-adrenergic receptors (ARs) as revealed by label-free dynamic mass redistribution (DMR) signaling technology and confirmed by quantitative reverse-transcriptase polymerase chain reaction analysis. Remarkably, although endogenous α1B-ARs are not detectable via either [3H]-prazosin-binding analysis or phosphoinositol hydrolysis assays, their activation leads to robust DMR and enhanced cell viability. We provide pharmacological evidence that stimulation of α1B-ARs enhances SW480 cell viability without affecting proliferation, whereas stimulating ß-ARs diminishes both viability and proliferation of SW480 cells. Our study illustrates the power of label-free DMR technology for identifying and characterizing low-density GPCRs in cells and suggests that drugs targeting both α1B- and ß-ARs may represent valuable small-molecule therapeutics for the treatment of colon cancer.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Carcinoma , Neoplasias del Colon , Receptores Adrenérgicos alfa 1 , Biofarmacia/métodos , Carcinoma/metabolismo , Carcinoma/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Descubrimiento de Drogas , Humanos , Receptores Adrenérgicos alfa 1/análisis , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estimulación Química
12.
Pharmacol Res ; 115: 233-241, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27832960

RESUMEN

Indole-based compounds, such as the alkyl-indole (AI) compound WIN55212-2, activate the cannabinoid receptors, CB1 and CB2, two well-characterized G protein-coupled receptors (GPCR). Reports indicate that several indole-based cannabinoid agonists, including WIN55212-2, lack selectivity and interact with at least two additional targets: AI-sensitive GPCRs and microtubules. Studying how indole-based compounds modulate the activity of these 4 targets has been difficult as selective chemical tools were not available. Here we report the pharmacological characterization of six newly-developed indole-based compounds (ST-11, ST-23, ST-25, ST-29, ST-47 and ST-48) that exhibit distinct binding affinities at AI-sensitive receptors, cannabinoid CB1 and CB2 receptors and the colchicine site of tubulin. Several compounds exhibit some level of selectivity for AI-sensitive receptors, including ST-11 that binds AI-sensitive receptors with a Kd of 52nM and appears to have a weaker affinity for the colchicine site of tubulin (Kd=3.2µM) and does not bind CB1/CB2 receptors. Leveraging these characteristics, we show that activation of AI-sensitive receptors with ST-11 inhibits both the basal and stimulated migration of the Delayed Brain Tumor (DBT) mouse glioma cell line. Our study describes a new series of indole-based compounds that enable the pharmacological and functional differentiation of alkylindole-sensitive receptors from cannabinoid receptors and microtubules.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Glioma/tratamiento farmacológico , Indoles/farmacología , Microtúbulos/efectos de los fármacos , Receptores de Cannabinoides/metabolismo , Animales , Benzoxazinas/farmacología , Unión Competitiva/fisiología , Agonistas de Receptores de Cannabinoides/farmacología , Línea Celular , Colchicina/metabolismo , Glioma/metabolismo , Células HEK293 , Humanos , Ratones , Morfolinas/farmacología , Naftalenos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Tubulina (Proteína)/metabolismo
13.
Pharmacol Res ; 105: 13-21, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26773201

RESUMEN

G protein-coupled receptors (GPCRs) are essential membrane proteins that facilitate cell-to-cell communication and co-ordinate physiological processes. At least 30 human GPCRs contain a Type I PSD-95/DLG/Zo-1 (PDZ) ligand in their distal C-terminal domain; this four amino acid motif of X-[S/T]-X-[φ] sequence facilitates interactions with PDZ domain-containing proteins. Because PDZ protein interactions have profound effects on GPCR ligand pharmacology, cellular localization, signal-transduction effector coupling and duration of activity, we analyzed the importance of Type I PDZ ligands for the function of 23 full-length and PDZ-ligand truncated (ΔPDZ) human GPCRs in cultured human cells. SNAP-epitope tag polyacrylamide gel electrophoresis revealed most Type I PDZ GPCRs exist as both monomers and multimers; removal of the PDZ ligand played minimal role in multimer formation. Additionally, SNAP-cell surface staining indicated removal of the PDZ ligand had minimal effects on plasma membrane localization for most GPCRs examined. Label-free dynamic mass redistribution functional responses, however, revealed diverging effects of the PDZ ligand. While no clear trend was observed across all GPCRs tested or even within receptor families, a subset of GPCRs displayed diminished agonist efficacy in the absence of a PDZ ligand (i.e. HT2RB, ADRB1), whereas others demonstrated enhanced agonist efficacies (i.e. LPAR2, SSTR5). These results demonstrate the utility of label-free functional assays to tease apart the contributions of conserved protein interaction domains for GPCR signal-transduction coupling in cultured cells.


Asunto(s)
Descubrimiento de Drogas , Receptores Acoplados a Proteínas G/metabolismo , Descubrimiento de Drogas/métodos , Células HEK293 , Humanos , Ligandos , Dominios PDZ , Dominios y Motivos de Interacción de Proteínas , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/análisis , Transducción de Señal
14.
Glia ; 63(10): 1797-808, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25914169

RESUMEN

Ligands targeting G protein-coupled receptors (GPCR) expressed by microglia have been shown to regulate distinct components of their activation process, including cell proliferation, migration and differentiation into M1 or M2 phenotypes. Cannabinoids, including the active component of the Cannabis plant, tetrahydrocannabinol (THC), and the synthetic alkylindole (AI) compound, WIN55212-2 (WIN-2), activate two molecularly identified GPCRs: CB1 and CB2 . Previous studies reported that WIN-2 activates an additional unknown GPCR that is not activated by plant-derived cannabinoids, and evidence indicates that microglia express these receptors. Detailed studies on the role of AI-sensitive receptors in microglial cell activation were difficult as no selective pharmacological tools were available. Here, three newly-developed AI analogues allowed us to determine if microglia express AI-sensitive receptors and if so, study how they regulate the microglial cell activation process. We found that mouse microglia in primary culture express functional AI-sensitive receptors as measured by radioligand binding and changes in intracellular cAMP levels, and that these receptors control both basal and ATP-stimulated migration. AI analogues inhibit cell proliferation stimulated by macrophage-colony stimulating factor (M-CSF) without affecting basal cell proliferation. Remarkably, AI analogues do not control the expression of effector proteins characteristic of M1 or M2 phenotypes; yet activating microglia with M1 and M2 cytokines reduces the microglial response to AI analogues. Our results suggest that microglia express functional AI-sensitive receptors that control select components of their activation process. Agonists of these novel targets might represent a novel class of therapeutics to influence the microglial cell activation process.


Asunto(s)
Movimiento Celular/fisiología , Proliferación Celular/fisiología , Microglía/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Adenosina Trifosfato/farmacología , Animales , Animales Recién Nacidos , Benzoxazinas/farmacología , Encéfalo/citología , Bloqueadores de los Canales de Calcio/farmacología , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CXCL10/metabolismo , AMP Cíclico/metabolismo , Citocinas/farmacología , Dronabinol/farmacología , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Morfolinas/farmacología , Naftalenos/farmacología , Óxido Nítrico/metabolismo
15.
Neurobiol Dis ; 71: 140-50, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25134728

RESUMEN

Huntington's disease (HD) is caused by an expanded polyglutamine repeat in huntingtin protein that disrupts synaptic function in specific neuronal populations and results in characteristic motor, cognitive and affective deficits. Histopathological hallmarks observed in both HD patients and genetic mouse models include the reduced expression of synaptic proteins, reduced medium spiny neuron (MSN) dendritic spine density and decreased frequency of spontaneous excitatory post-synaptic currents (sEPSCs). Early down-regulation of cannabinoid CB1 receptor expression on MSN (CB1(MSN)) is thought to participate in HD pathogenesis. Here we present a cell-specific genetic rescue of CB1(MSN) in R6/2 mice and report that treatment prevents the reduction of excitatory synaptic markers in the striatum (synaptophysin, vGLUT1 and vGLUT2), of dendritic spine density on MSNs and of MSN sEPSCs, but does not prevent motor impairment. We conclude that loss of excitatory striatal synapses in HD mice is controlled by CB1(MSN) and can be uncoupled from the motor phenotype.


Asunto(s)
Cuerpo Estriado/patología , Enfermedad de Huntington/terapia , Actividad Motora/genética , Neuronas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Sinapsis/fisiología , Potenciales de Acción/genética , Animales , Potenciales Postsinápticos Excitadores/genética , Femenino , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Fuerza Muscular/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Neuronas/ultraestructura , Proteínas Nucleares/genética , Receptor Cannabinoide CB1/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Tinción con Nitrato de Plata , Factores de Tiempo
16.
Prostate ; 74(11): 1107-17, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24913716

RESUMEN

BACKGROUND: The endocannabinoid system regulates cancer cell proliferation, and in prostate cancer a high cannabinoid CB1 receptor expression is associated with a poor prognosis. Down-stream mediators of CB1 receptor signaling in prostate cancer are known, but information on potential upstream regulators is lacking. RESULTS: Data from a well-characterized tumor tissue microarray were used for a Bayesian network analysis using the max-min hill-climbing method. In non-malignant tissue samples, a directionality of pEGFR (the phosphorylated form of the epidermal growth factor receptor) → CB1 receptors were found regardless as to whether the endocannabinoid metabolizing enzyme fatty acid amide hydrolase (FAAH) was included as a parameter. A similar result was found in the tumor tissue, but only when FAAH was included in the analysis. A second regulatory pathway, from the growth factor receptor ErbB2 → FAAH was also identified in the tumor samples. Transfection of AT1 prostate cancer cells with CB1 receptors induced a sensitivity to the growth-inhibiting effects of the CB receptor agonist CP55,940. The sensitivity was not dependent upon the level of receptor expression. Thus a high CB1 receptor expression alone does not drive the cells towards a survival phenotype in the presence of a CB receptor agonist. CONCLUSIONS: The data identify two potential regulators of the endocannabinoid system in prostate cancer and allow the construction of a model of a dysregulated endocannabinoid signaling network in this tumor. Further studies should be designed to test the veracity of the predictions of the network analysis in prostate cancer and other solid tumors.


Asunto(s)
Neoplasias de la Próstata/patología , Neoplasias de la Próstata/fisiopatología , Receptor Cannabinoide CB1/fisiología , Transducción de Señal/fisiología , Análisis de Matrices Tisulares/métodos , Amidohidrolasas/fisiología , Teorema de Bayes , Proliferación Celular , Receptores ErbB/fisiología , Humanos , Masculino , Glicoproteínas de Membrana/fisiología , Pronóstico , Neoplasias de la Próstata/diagnóstico , Receptor ErbB-2/fisiología , Estudios Retrospectivos
17.
Inflammopharmacology ; 22(5): 295-303, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25135301

RESUMEN

Cannabinoids affect immune responses in ways that may be beneficial for autoimmune diseases. We sought to determine whether chronic Cannabis use differentially modulates a select number of immune parameters in healthy controls and individuals with multiple sclerosis (MS cases). Subjects were enrolled and consented to a single blood draw, matched for age and BMI. We measured monocyte migration isolated from each subject, as well as plasma levels of endocannabinoids and cytokines. Cases met definition of MS by international diagnostic criteria. Monocyte cell migration measured in control subjects and individuals with MS was similarly inhibited by a set ratio of phytocannabinoids. The plasma levels of CCL2 and IL17 were reduced in non-naïve cannabis users irrespective of the cohorts. We detected a significant increase in the endocannabinoid arachidonoylethanolamine (AEA) in serum from individuals with MS compared to control subjects, and no significant difference in levels of other endocannabinoids and signaling lipids irrespective of Cannabis use. Chronic Cannabis use may affect the immune response to similar extent in individuals with MS and control subjects through the ability of phytocannabinoids to reduce both monocyte migration and cytokine levels in serum. From a panel of signaling lipids, only the levels of AEA are increased in individuals with MS, irrespective of Cannabis use or not. Our results suggest that both MS cases and controls respond similarly to chronic Cannabis use with respect to the immune parameters measured in this study.


Asunto(s)
Cannabinoides/administración & dosificación , Cannabis/química , Fumar Marihuana/metabolismo , Esclerosis Múltiple/inmunología , Adulto , Ácidos Araquidónicos/metabolismo , Estudios de Casos y Controles , Movimiento Celular/fisiología , Quimiocina CCL2/sangre , Estudios Transversales , Endocannabinoides/metabolismo , Femenino , Humanos , Interleucina-17/sangre , Masculino , Monocitos/metabolismo , Esclerosis Múltiple/metabolismo , Alcamidas Poliinsaturadas/metabolismo
18.
Elife ; 122024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214701

RESUMEN

No preclinical experimental approach enables the study of voluntary oral consumption of high-concentration Δ9-tetrahydrocannabinol (THC) and its intoxicating effects, mainly owing to the aversive response of rodents to THC that limits intake. Here, we developed a palatable THC formulation and an optimized access paradigm in mice to drive voluntary consumption. THC was formulated in chocolate gelatin (THC-E-gel). Adult male and female mice were allowed ad libitum access for 1 and 2 hr. Cannabimimetic responses (hypolocomotion, analgesia, and hypothermia) were measured following access. Levels of THC and its metabolites were measured in blood and brain tissue. Acute acoustic startle responses were measured to investigate THC-induced psychotomimetic behavior. When allowed access for 2 hr to THC-E-gel on the second day of a 3-day exposure paradigm, adult mice consumed up to ≈30 mg/kg over 2 hr, which resulted in robust cannabimimetic behavioral responses (hypolocomotion, analgesia, and hypothermia). Consumption of the same gelatin decreased on the following third day of exposure. Pharmacokinetic analysis shows that THC-E-gel consumption led to parallel accumulation of THC and its psychoactive metabolite, 11-OH-THC, in the brain, a profile that contrasts with the known rapid decline in brain 11-OH-THC levels following THC intraperitoneal (i.p.) injections. THC-E-gel consumption increased the acoustic startle response in males but not in females, demonstrating a sex-dependent effect of consumption. Thus, while voluntary consumption of THC-E-gel triggered equivalent cannabimimetic responses in male and female mice, it potentiated acoustic startle responses preferentially in males. We built a dose-prediction model that included cannabimimetic behavioral responses elicited by i.p. versus THC-E-gel to test the accuracy and generalizability of this experimental approach and found that it closely predicted the measured acoustic startle results in males and females. In summary, THC-E-gel offers a robust preclinical experimental approach to study cannabimimetic responses triggered by voluntary consumption in mice, including sex-dependent psychotomimetic responses.


Asunto(s)
Dronabinol , Hipotermia , Ratones , Masculino , Femenino , Animales , Reflejo de Sobresalto , Gelatina/farmacología , Conducta Animal
19.
Br J Pharmacol ; 181(15): 2459-2477, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38581262

RESUMEN

BACKGROUND AND PURPOSE: Neurotransmission and neuroinflammation are controlled by local increases in both extracellular ATP and the endocannabinoid 2-arachidonoyl glycerol (2-AG). While it is known that extracellular ATP stimulates 2-AG production in cells in culture, the dynamics and molecular mechanisms that underlie this response remain poorly understood. Detection of real-time changes in eCB levels with the genetically encoded sensor, GRABeCB2.0, can address this shortfall. EXPERIMENTAL APPROACH: 2-AG and arachidonoylethanolamide (AEA) levels in Neuro2a (N2a) cells were measured by LC-MS, and GRABeCB2.0 fluorescence changes were detected using live-cell confocal microscopy and a 96-well fluorescence plate reader. KEY RESULTS: 2-AG and AEA increased GRABeCB2.0 fluorescence in N2a cells with EC50 values of 81 and 58 nM, respectively; both responses were reduced by the cannabinoid receptor type 1 (CB1R) antagonist SR141617 and absent in cells expressing the mutant-GRABeCB2.0. ATP increased only 2-AG levels in N2a cells, as measured by LC-MS, and induced a transient increase in the GRABeCB2.0 signal within minutes primarily via activation of P2X7 receptors (P2X7R). This response was dependent on diacylglycerol lipase ß activity, partially dependent on extracellular calcium and phospholipase C activity, but not controlled by the 2-AG hydrolysing enzyme, α/ß-hydrolase domain containing 6 (ABHD6). CONCLUSIONS AND IMPLICATIONS: Considering that P2X7R activation increases 2-AG levels within minutes, our results show how these molecular components are mechanistically linked. The specific molecular components in these signalling systems represent potential therapeutic targets for the treatment of neurological diseases, such as chronic pain, that involve dysregulated neurotransmission and neuroinflammation.


Asunto(s)
Ácidos Araquidónicos , Endocannabinoides , Glicéridos , Neuronas , Receptores Purinérgicos P2X7 , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Ácidos Araquidónicos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animales , Ratones , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Monoacilglicerol Lipasas/metabolismo , Monoacilglicerol Lipasas/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Línea Celular Tumoral
20.
J Neurosci ; 32(50): 18259-68, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23238740

RESUMEN

Peripheral immune cells and brain microglia exhibit an activated phenotype in premanifest Huntington's disease (HD) patients that persists chronically and correlates with clinical measures of neurodegeneration. However, whether activation of the immune system contributes to neurodegeneration in HD, or is a consequence thereof, remains unclear. Signaling through cannabinoid receptor 2 (CB(2)) dampens immune activation. Here, we show that the genetic deletion of CB(2) receptors in a slowly progressing HD mouse model accelerates the onset of motor deficits and increases their severity. Treatment of mice with a CB(2) receptor agonist extends life span and suppresses motor deficits, synapse loss, and CNS inflammation, while a peripherally restricted CB(2) receptor antagonist blocks these effects. CB(2) receptors regulate blood interleukin-6 (IL-6) levels, and IL-6 neutralizing antibodies partially rescue motor deficits and weight loss in HD mice. These findings support a causal link between CB(2) receptor signaling in peripheral immune cells and the onset and severity of neurodegeneration in HD, and they provide a novel therapeutic approach to treat HD.


Asunto(s)
Enfermedad de Huntington/inmunología , Enfermedad de Huntington/metabolismo , Leucocitos/metabolismo , Receptor Cannabinoide CB2/metabolismo , Transducción de Señal/fisiología , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Enfermedad de Huntington/patología , Interleucina-6/inmunología , Interleucina-6/metabolismo , Leucocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Cannabinoide CB2/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA