Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Control ; 31: 10732748241251571, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38869038

RESUMEN

OBJECTIVES: To determine the dysregulated signaling pathways of head and neck squamous cell carcinoma associated with circulating tumor cells (CTCs) via single-cell molecular characterization. INTRODUCTION: Head and neck squamous cell carcinoma (HNSCC) has a significant global burden and is a disease with poor survival. Despite trials exploring new treatment modalities to improve disease control rates, the 5 year survival rate remains low at only 60%. Most cancer malignancies are reported to progress to a fatal phase due to the metastatic activity derived from treatment-resistant cancer cells, regarded as one of the most significant obstacles to develope effective cancer treatment options. However, the molecular profiles of cancer cells have not been thoroughly studied. METHODS: Here, we examined in-situ HNSCC tumors and pairwisely followed up with the downstream circulating tumor cells (CTCs)-based on the surrogate biomarkers to detect metastasis that is established in other cancers - not yet being fully adopted in HNSCC treatment algorithms. RESULTS: Specifically, we revealed metastatic HNSCC patients have complex CTCs that could be defined through gene expression and mutational gene profiling derived from completed single-cell RNASeq (scRNASeq) that served to confirm molecular pathways inherent in these CTCs. To enhance the reliability of our findings, we cross-validated those molecular profiles with results from previously published studies. CONCLUSION: Thus, we identified 5 dysregulated signaling pathways in CTCs to derive HNSCC biomarker panels for screening HNSCC in situ tumors.


ObjectivesInvestigating the dysregulated signaling pathways of head and neck squamous cell carcinoma (HNSCC) linked with circulating tumor cells (CTCs) using single-cell molecular characterization.IntroductionHNSCC poses a significant global health burden with poor survival rates despite advancements in treatment. Metastatic activity from treatment-resistant cancer cells remains a major challenge in developing effective treatments. However, the molecular profiles of cancer cells, particularly CTCs, are not well-understood.MethodsWe analyzed in-situ HNSCC tumors and corresponding CTCs using surrogate biomarkers to detect metastasis, a technique not widely used in HNSCC treatment protocols.ResultsOur study revealed complex CTCs in metastatic HNSCC patients characterized by gene expression and mutational gene profiling via single-cell RNASeq (scRNASeq). These profiles confirmed molecular pathways inherent in CTCs, further validated by previous research.ConclusionThrough our research, we identified five dysregulated signaling pathways in CTCs, suggesting potential biomarker panels for HNSCC screening in situ tumors.


Asunto(s)
Neoplasias de Cabeza y Cuello , Células Neoplásicas Circulantes , Transducción de Señal , Análisis de la Célula Individual , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/sangre , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/sangre , Neoplasias de Cabeza y Cuello/metabolismo , Análisis de la Célula Individual/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/sangre , Masculino , Femenino , Perfilación de la Expresión Génica/métodos , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica
2.
Cancer Control ; 30: 10732748231175017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37161925

RESUMEN

INTRODUCTION: Neuroblastoma (NB) is one of the children's most common solid tumors, accounting for approximately 8% of pediatric malignancies and 15% of childhood cancer deaths. Somatic mutations in several genes, such as ALK, have been associated with NB progression and can facilitate the discovery of novel therapeutic strategies. However, the differential expression of mutated and wild-type alleles on the transcriptome level is poorly studied. METHODS: This study analyzed 219 whole-exome sequencing datasets with somatic mutations detected by MuTect from paired normal and tumor samples. RESULTS: We prioritized mutations in 8 candidate genes (RIMS4, RUSC2, ALK, MYCN, PTPN11, ALOX12B, ZNF44, and CNGB1) as potential driver mutations. We further confirmed the presence of allele-specific expression of the somatic mutations in NB with integrated analysis of 127 RNA-seq samples (of which 85 also had DNA-seq data available), including MYCN, ALK, and PTPN11. The allele-specific expression of mutations suggests that the same somatic mutation may have different effects on the clinical outcomes of tumors. CONCLUSION: Our study suggests 2 novel variants of ZNF44 as a novel candidate driver gene for NB.


Asunto(s)
Neuroblastoma , ARN , Niño , Humanos , Alelos , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/genética , Proteínas Tirosina Quinasas Receptoras , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Proteínas Portadoras
3.
BMC Genomics ; 21(Suppl 11): 793, 2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33372596

RESUMEN

BACKGROUND: Long-read RNA-Seq techniques can generate reads that encompass a large proportion or the entire mRNA/cDNA molecules, so they are expected to address inherited limitations of short-read RNA-Seq techniques that typically generate < 150 bp reads. However, there is a general lack of software tools for gene fusion detection from long-read RNA-seq data, which takes into account the high basecalling error rates and the presence of alignment errors. RESULTS: In this study, we developed a fast computational tool, LongGF, to efficiently detect candidate gene fusions from long-read RNA-seq data, including cDNA sequencing data and direct mRNA sequencing data. We evaluated LongGF on tens of simulated long-read RNA-seq datasets, and demonstrated its superior performance in gene fusion detection. We also tested LongGF on a Nanopore direct mRNA sequencing dataset and a PacBio sequencing dataset generated on a mixture of 10 cancer cell lines, and found that LongGF achieved better performance to detect known gene fusions over existing computational tools. Furthermore, we tested LongGF on a Nanopore cDNA sequencing dataset on acute myeloid leukemia, and pinpointed the exact location of a translocation (previously known in cytogenetic resolution) in base resolution, which was further validated by Sanger sequencing. CONCLUSIONS: In summary, LongGF will greatly facilitate the discovery of candidate gene fusion events from long-read RNA-Seq data, especially in cancer samples. LongGF is implemented in C++ and is available at https://github.com/WGLab/LongGF .


Asunto(s)
Programas Informáticos , Transcriptoma , Algoritmos , Fusión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN
4.
Carcinogenesis ; 39(7): 931-936, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29718126

RESUMEN

Glioblastoma multiforme (GBM) remains an incurable brain tumor. The highly malignant behavior of GBM may, in part, be attributed to its intraclonal genetic and phenotypic diversity (subclonal evolution). Identifying the molecular pathways driving GBM relapse may provide novel, actionable targets for personalized diagnosis, characterization of prognosis and improvement of precision therapy. We screened single-cell transcriptomes, namely RNA-seq data of primary and relapsed GBM tumors from a patient, to define the molecular profile of relapse. Characterization of hundreds of individual tumor cells identified three mutated genes within single cells, involved in the RAS/GEF GTP-dependent signaling pathway. The identified molecular pathway was further verified by meta-analysis of RNA-seq data from more than 3000 patients. This study showed that single-cell molecular analysis overcomes the inherent heterogeneity of bulk tumors with respect to defining tumor subclonal evolution relevant to GBM relapse.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Neoplasias Encefálicas/genética , Glioblastoma/genética , Humanos , Masculino , Metaanálisis como Asunto , Mutación/genética , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Pronóstico , Recurrencia , Transducción de Señal/fisiología , Análisis de la Célula Individual/métodos
5.
Patterns (N Y) ; 5(5): 100969, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38800361

RESUMEN

Understanding the cellular composition of a disease-related tissue is important in disease diagnosis, prognosis, and downstream treatment. Recent advances in single-cell RNA-sequencing (scRNA-seq) technique have allowed the measurement of gene expression profiles for individual cells. However, scRNA-seq is still too expensive to be used for large-scale population studies, and bulk RNA-seq is still widely used in such situations. An essential challenge is to deconvolve cellular composition for bulk RNA-seq data based on scRNA-seq data. Here, we present DeepDecon, a deep neural network model that leverages single-cell gene expression information to accurately predict the fraction of cancer cells in bulk tissues. It provides a refining strategy in which the cancer cell fraction is iteratively estimated by a set of trained models. When applied to simulated and real cancer data, DeepDecon exhibits superior performance compared to existing decomposition methods in terms of accuracy.

6.
J Neurosci ; 32(29): 9773-84, 2012 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-22815492

RESUMEN

PTI-125 is a novel compound demonstrating a promising new approach to treating Alzheimer's disease (AD), characterized by neurodegeneration and amyloid plaque and neurofibrillary pathologies. We show that the toxic signaling of amyloid-ß(42) (Aß(42)) by the α7-nicotinic acetylcholine receptor (α7nAChR), which results in tau phosphorylation and formation of neurofibrillary tangles, requires the recruitment of the scaffolding protein filamin A (FLNA). By binding FLNA with high affinity, PTI-125 prevents Aß(42)'s toxic cascade, decreasing phospho-tau and Aß aggregates and reducing the dysfunction of α7nAChRs, NMDARs, and insulin receptors. PTI-125 prevents Aß(42) signaling by drastically reducing its affinity for α7nAChRs and can even dissociate existing Aß(42)-α7nAChR complexes. Additionally, PTI-125 prevents Aß-induced inflammatory cytokine release by blocking FLNA recruitment to toll-like receptor 4, illustrating an anti-inflammatory effect. PTI-125's broad spectrum of beneficial effects is demonstrated here in an intracerebroventricular Aß(42) infusion mouse model of AD and in human postmortem AD brain tissue.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/efectos de los fármacos , Proteínas Contráctiles/antagonistas & inhibidores , Proteínas de Microfilamentos/antagonistas & inhibidores , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proteínas Contráctiles/metabolismo , Citocinas/metabolismo , Femenino , Filaminas , Humanos , Masculino , Ratones , Proteínas de Microfilamentos/metabolismo , Ovillos Neurofibrilares/efectos de los fármacos , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Fosforilación/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Nicotínicos/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7 , Proteínas tau/metabolismo
7.
J Neurosci ; 31(30): 11044-54, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21795553

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) induces neuronal long-term potentiation or depression. Although brain-derived neurotrophic factor (BDNF) and its cognate tyrosine receptor kinase B (TrkB) contribute to the effects of rTMS, their precise role and underlying mechanism remain poorly understood. Here we show that daily 5 Hz rTMS for 5 d improves BDNF-TrkB signaling in rats by increasing the affinity of BDNF for TrkB, which results in higher tyrosine-phosphorylated TrkB, increased recruitment of PLC-γ1 and shc/N-shc to TrkB, and heightened downstream ERK2 and PI-3K activities in prefrontal cortex and in lymphocytes. The elevated BDNF-TrkB signaling is accompanied by an increased association between the activated TrkB and NMDA receptor (NMDAR). In normal human subjects, 5 d rTMS to motor cortex decreased resting motor threshold, which correlates with heightened BDNF-TrkB signaling and intensified TrkB-NMDAR association in lymphocytes. These findings suggest that rTMS to cortex facilitates BDNF-TrkB-NMDAR functioning in both cortex and lymphocytes.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/líquido cefalorraquídeo , Encéfalo/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Linfocitos/efectos de la radiación , Receptor trkB/líquido cefalorraquídeo , Transducción de Señal/efectos de la radiación , Estimulación Magnética Transcraneal , Adulto , Análisis de Varianza , Animales , Encéfalo/metabolismo , Estudios Cruzados , Método Doble Ciego , Electromiografía , Potenciales Evocados Motores/fisiología , Femenino , Regulación de la Expresión Génica/fisiología , Humanos , Técnicas In Vitro , Linfocitos/metabolismo , Masculino , Músculo Esquelético/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/fisiología , Estadística como Asunto , Adulto Joven
9.
Cancers (Basel) ; 14(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35740540

RESUMEN

Currently, most neuroblastoma patients are treated according to the Children's Oncology Group (COG) risk group assignment; however, neuroblastoma's heterogeneity renders only a few predictors for treatment response, resulting in excessive treatment. Here, we sought to couple COG risk classification with tumor intracellular microbiome, which is part of the molecular signature of a tumor. We determine that an intra-tumor microbial gene abundance score, namely M-score, separates the high COG-risk patients into two subpopulations (Mhigh and Mlow) with higher accuracy in risk stratification than the current COG risk assessment, thus sparing a subset of high COG-risk patients from being subjected to traditional high-risk therapies. Mechanistically, the classification power of M-scores implies the effect of CREB over-activation, which may influence the critical genes involved in cellular proliferation, anti-apoptosis, and angiogenesis, affecting tumor cell proliferation survival and metastasis. Thus, intracellular microbiota abundance in neuroblastoma regulates intracellular signals to affect patients' survival.

10.
Front Cell Dev Biol ; 10: 699144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356283

RESUMEN

Background: The mechanism of tumorigenicity potentially evolved in mesenchymal stem cells (MSCs) remains elusive, resulting in inconsistent clinical application efficacy. We hypothesized that subclones in MSCs contribute to their tumorgenicity, and we approached MSC-subclones at the single-cell level. Methods: MSCs were cultured in an osteogenic differentiation medium and harvested on days 12, 19, and 25 for cell differentiation analysis using Alizarin Red and followed with the single-cell transcriptome. Results: Single-cell RNA-seq analysis reveals a discrete cluster of MSCs during osteogenesis, including differentiation-resistant MSCs (DR-MSCs), differentiated osteoblasts (DO), and precursor osteoblasts (PO). The DR-MSCs population resembled cancer initiation cells and were subjected to further analysis of the yes associated protein 1 (YAP1) network. Verteporfin was also used for YAP1 inhibition in cancer cell lines to confirm the role of YAP1 in MSC--involved tumorigenicity. Clinical data from various cancer types were analyzed to reveal relationships among YAP1, OCT4, and CDH6 in MSC--involved tumorigenicity. The expression of cadherin 6 (CDH6), octamer-binding transcription factor 4 (OCT4), and YAP1 expression was significantly upregulated in DR-MSCs compared to PO and DO. YAP1 inhibition by Verteporfin accelerated the differentiation of MSCs and suppressed the expression of YAP1, CDH6, and OCT4. A survey of 56 clinical cohorts revealed a high degree of co-expression among CDH6, YAP1, and OCT4 in various solid tumors. YAP1 inhibition also down-regulated HeLa cell viability and gradually inhibited YAP1 nuclear localization while reducing the transcription of CDH6 and OCT4. Conclusions: We used single-cell sequencing to analyze undifferentiated MSCs and to discover a carcinogenic pathway in single-cell MSCs of differentiated resistance subclones.

11.
Diagnostics (Basel) ; 11(12)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34943600

RESUMEN

BACKGROUND: Neuroblastoma (N.B.) is the most common tumor in children. The gene BDP1 (B Double Prime 1) plays a role in cancers but is less known in N.B. Thus, we conducted this study to investigate the value of BDP1 mutations in N.B. METHODS: A dataset of 121 NB patients from the Cancer Genome Atlas database was used to analyze BDP1 gene mutations by RNA sequencing. Kaplan-Meier estimates were performed for overall survival (O.S.) analysis on BDP1 variants, and Cox's proportional hazards regression model was used for multivariate analysis. RESULTS: In 121 NB patients, we identified two variants of BDP1 associated with N.B., located at chr5:71511131 and chr5:71510884. The prevalence of these BDP1 variants, I1264M and V1347M, was 52.9% (64/121) and 45.5% (55/121), respectively. O.S. analysis showed a significant difference between subgroups with or without BDP1 variants (p < 0.05). Multivariate analysis further revealed that BDP1ariants were independent prognostic variables in N.B. (p < 0.05). CONCLUSION: Our results suggest BDP1 variants are associated with significantly improved clinical outcomes in N.B., thus providing clinicians with a new tool.

12.
Blood Genom ; 5(1): 29-39, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368804

RESUMEN

An increasing number of reports indicate that mesenchymal stem cells (MSCs) play an essential role in promoting tumorigenesis and progression of head and neck squamous cell carcinoma (HNSCC). However, the molecular mechanisms underlying this process remain unclear. Using the MSC model system, this study analyzes the molecular pathway by which differentiation resistant MSCs promote HNSCC. MSCs were cultured in osteogenic differentiation media and harvested on days 12 and 19. Cells were stained for cell differentiation analysis using Alizarin Red. The osteogenesis-resistant MSCs (OR-MSCs) and MSC-differentiation-derived osteoblasts (D-OSTBs) were identified and subjected to the single-cell transcriptome analysis. Gene-specific analyses of these two sub-populations were performed for the patterns of differential expression. A total of 1 780 differentially expressed genes were determined to distinguish OR-MSCs significantly from D-OSTB. Notably, AJUBA, ß-catenin, and CDH4 expression levels were upregulated considerably within the OR-MSCs compared to D-OSTBs. To confirm their clinical relevance, a survey of a clinical cohort revealed a high correlation among the expression levels of AJUBA, ß-catenin and CDH4. The results shed new light that OR-MSCs participate in the development of HNSCC via a pathway mediated by AJUBA, ß-catenin, CDH4, and CTNNB1, thereby implying that MSC-based therapy is a promising therapeutic approach in the management of HNSCC.

13.
J Neurosci ; 29(35): 10961-73, 2009 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-19726654

RESUMEN

Alzheimer's disease (AD) is characterized by synaptic dysfunction and cardinal neuropathological features including amyloid plaques and neurofibrillary tangles. Soluble amyloid-beta (Abeta) can suppress synaptic activities by interacting with alpha7 nicotinic acetylcholine receptors (alpha7nAChRs). Here, we show that alpha7nAChR and NMDA glutamatergic receptor (NMDAR) activities are severely compromised in synaptosomes prepared from AD and Abeta(1-42) (Abeta42)-exposed control frontal cortex slices from postmortem tissue. Whereas Abeta(12-28) prevents Abeta42 from binding to alpha7nAChRs, 2-[2-(4-bromophenyl)-2-oxoethyl]-1-methyl pyridinium (S 24795), a novel alpha7nAChR partial agonist, facilitates release of Abeta42 from Abeta42-alpha7nAChR and -Abeta42 complexes. S 24795 interacts with alpha7nAChR and Abeta(15-20) region of the Abeta42 to enable partial recovery of the alpha7nAChR and NMDAR channel function. These findings suggest that the Abeta-alpha7nAChR interaction may be an upstream pathogenic event in AD and demonstrate that some recovery of neuronal channel activities may be achieved in AD brains by removing Abeta from alpha7nAChRs.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/fisiología , Encéfalo/fisiología , Sistemas de Liberación de Medicamentos/métodos , Compuestos de Piridinio/administración & dosificación , Receptores de N-Metil-D-Aspartato/fisiología , Receptores Nicotínicos/fisiología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Sistemas de Liberación de Medicamentos/tendencias , Femenino , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Receptor Nicotínico de Acetilcolina alfa 7
14.
J Neurosci ; 29(19): 6308-19, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19439608

RESUMEN

Prenatal cocaine exposure produces sustained neurobehavioral and brain synaptic changes closely resembling those of animals with defective AMPA receptors (AMPARs). We hypothesized that prenatal cocaine exposure attenuates AMPAR signaling by interfering with AMPAR synaptic targeting. AMPAR function is governed by receptor cycling on and off the synaptic membrane through its interaction with glutamate receptor-interacting protein (GRIP), a PDZ domain protein that is regulated by reversible phosphorylation. Our results show that prenatal cocaine exposure markedly reduces AMPAR synaptic targeting and attenuates AMPAR-mediated synaptic long-term depression in the frontal cortex of 21-d-old rats. This cocaine effect is the result of reduced GRIP-AMPAR interaction caused by persistent phosphorylation of GRIP by protein kinase C (PKC) and Src tyrosine kinase. These data support the restoration of AMPAR activation via suppressing excessive PKC-mediated GRIP phosphorylation as a novel therapeutic approach to treat the neurobehavioral consequences of prenatal cocaine.


Asunto(s)
Proteínas Portadoras/metabolismo , Fármacos del Sistema Nervioso Central/toxicidad , Cocaína/toxicidad , Proteínas del Tejido Nervioso/metabolismo , Efectos Tardíos de la Exposición Prenatal , Receptores AMPA/metabolismo , Sinapsis/efectos de los fármacos , Animales , Femenino , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/crecimiento & desarrollo , Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Fosforilación/efectos de los fármacos , Embarazo , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Sinapsis/metabolismo , Familia-src Quinasas/metabolismo
15.
Pathogens ; 9(11)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207582

RESUMEN

Oral lichen planus (OLP) is a common chronic inflammatory disease affecting the oral mucosa. The pathogenesis of OLP is incompletely understood but is thought to be related to the immune system. As the oral cavity is a major reservoir and transmission gateway for bacteria, viruses, and fungi, the microbial composition of the oral cavity could play a role in the pathogenesis of OLP. However, limited by analytic technology and knowledge of the microbial community in the oral cavity, it is not yet clear which pathogens are associated with OLP. Next generation sequencing (NGS) is a powerful tool to identify pathogens for many infectious diseases. In this study, we compared the host cell gene expression profiles and the microbial profiles between OLP patients and matched healthy individuals. We identified the activation of the hepatocyte nuclear factor alpha (HNF4A) network in OLP patients and potential pathogens, including Corynebacterium matruchotii, Fusobacterium periodonticum, Streptococcus intermedius, Streptococcus oralis, and Prevotella denticola. Prevotella denticola is capable of activating the HNF4A gene network. Our findings shed light on the previously elusive association of OLP with various diseases like hepatitis, and indicate that OLP is a T-helper type 17 (Th17) mediated mucosal inflammatory process. The identified molecular pathways and microbes could be used to inform future investigations into OLP pathogenesis and to develop novel therapeutics for OLP treatment.

16.
Mol Oncol ; 13(4): 829-839, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30597724

RESUMEN

Next-generation sequencing provides an opportunity to detect viral species from RNA-seq data of human tissues, but existing computational approaches do not perform optimally on clinical samples. We developed a bioinformatic method called VirTect for detecting viruses in neoplastic human tissues using RNA-seq data. Here, we used VirTect to analyze RNA-seq data from 363 head and neck squamous cell carcinoma (HNSCC) patients and identified 22 human papillomavirus (HPV)-induced HNSCCs. These predictions were validated by manual review of pathology reports on histopathologic specimens. VirTect showed better performance in recall and accuracy compared to the two existing prediction methods, VirusFinder and VirusSeq, in identifying viral sequences from RNA-seq data. The majority of HPV carcinogenesis studies thus far have been performed on cervical cancer and generalized to HNSCC. Our results suggest that carcinogenesis of HPV-induced HNSCC and other cases of HNSCC involve different genes, so understanding the underlying molecular mechanisms will have a significant impact on therapeutic approaches and outcomes. In summary, RNA-seq together with VirTect can be an effective solution for the detection of viruses from tumor samples and can facilitate the clinicopathologic characterization of various types of cancers with broad applications for oncology.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Papillomaviridae/genética , Papillomaviridae/aislamiento & purificación , Análisis de Secuencia de ARN/métodos , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Secuencia de Bases , Carcinogénesis/genética , Femenino , Regulación Viral de la Expresión Génica , Genes Virales , Humanos , Masculino , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
17.
Methods Mol Biol ; 1733: 215-223, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29435936

RESUMEN

Micro RNAs (miRNAs) are small RNAs processed from longer precursor RNA transcripts that can fold back on themselves to form Watson-Crick paired hairpin structures. Once processed from the longer molecule, the small RNA is much too short to code for proteins but can play other very important roles, like gene regulation. The phenomenon of RNA interference was initially observed by Napoli and Jorgensen in transgenic petunia flowers, where gene suppression was observed after introducing a transgene of chalcone synthase (CHS) belonging to the flavonoid biosynthesis pathway. miRNAs were first discovered for their roles in development but it has quickly become evident that they have causal roles in cancer as well. miRNA can also be used to manipulate genes for the investigation of carcinogenesis. Single-cell transcriptome profiling studies in our laboratory suggest that carcinogenesis often is the result of the malfunction of multiple members of a molecular pathway. Here, we describe a protocol to manipulate multiple cancer-related genes in a single human cell to investigate how multiple genes interact during carcinogenesis.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias/genética , Interferencia de ARN , Análisis de la Célula Individual , Línea Celular Tumoral , Humanos , Neoplasias/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de la Célula Individual/métodos
18.
Oncotarget ; 9(70): 33290-33301, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30279960

RESUMEN

The clinical benefits of the MammaPrint® signature for breast cancer is well documented; however, how these genes are related to cell cycle perturbation have not been well determined. Our single-cell transcriptome mapping (algorithm) provides details into the fine perturbation of all individual genes during a cell cycle, providing a view of the cell-cycle-phase specific landscape of any given human genes. Specifically, we identified that 38 out of the 70 (54%) MammaPrint® signature genes are perturbated to a specific phase of the cell cycle. The MammaPrint® signature panel derived its clinical prognosis power from measuring the cell cycle activity of specific breast cancer samples. Such cell cycle phase index of the MammaPrint® signature suggested that measurement of the cell cycle index from tumors could be developed into a prognosis tool for various types of cancer beyond breast cancer, potentially improving therapy through targeting a specific phase of the cell cycle of cancer cells.

19.
Mol Oncol ; 12(7): 1004-1011, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29638042

RESUMEN

Cytogenetic alterations form the basis for risk stratification for multiple myeloma (MM) and guide the selection of therapy; however, current pathology assays performed on bone marrow samples can produce false-negatives due to the unpredictable distribution and rarity of MM cells. Here, we report on a microfluidic device used to facilitate CD45 depletion to enhance the detection of cytogenetic alterations in plasma cells (PCs). Bone marrow samples from 48 patients with MM were each divided into two aliquots. One aliquot was subjected to classic flow cytometry and fluorescent in situ hybridization (FISH). The other first went through CD45+ cell depletion, further enriched by microfluidic size selection. The enriched samples were then analyzed using flow cytometry and FISH and compared to those analyzed using the classic method only. Unlike the traditional method, the microfluidic device removed the CD45+ leukocytes and specifically selected PCs from the remaining white blood cells. Therefore, the microfluidic method (MF-CD45-TACs) significantly increased the percentage of CD38+ /CD138+ cells to 37.7 ± 20.4% (P < 0.001) from 10.3 ± 8.5% in bone marrow. After the MF-CD45-TAC enrichment, the detection rate of IgH rearrangement, del(13q14), del(17p), and 1q21 gains, rose to 56.3% (P < 0.001), 37.5% (P < 0.001), 22.9% (P < 0.001), and 41.7% (P = 0.001), respectively; all rates of detection were significantly increased compared to the classically analyzed samples. In this clinical trial, this microfluidic-assisted assay provided a precise detection of cytogenetic alterations in PCs and improved clinical outcomes.


Asunto(s)
Microfluídica/métodos , Mieloma Múltiple/patología , Células Plasmáticas/patología , Adulto , Anciano , Línea Celular Tumoral , Femenino , Humanos , Antígenos Comunes de Leucocito/metabolismo , Masculino , Persona de Mediana Edad , Medición de Riesgo , Resultado del Tratamiento
20.
ACS Nano ; 12(5): 4687-4694, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29589910

RESUMEN

With conventional gene expression profiling, information concerning cellular heterogeneity is often lost in the physical mixing and averaging of millions of cells. Single-cell transcriptome analysis has the potential to address these issues. However, there is a need to determine how many cells are needed to draw meaningful conclusions in each single-cell study. Here, we introduce the concept of "digital lysate" for assessing cellular heterogeneity with a phase-switch microfluidic platform and apply it to construct a molecular map of transcriptome perturbation during the cell cycle. Using a phase-switch droplet microfluidic platform and next-generation sequencing, we obtained transcriptomes of single cells by random sampling. Digital lysates were generated by permutating and averaging multiple single-cell transcriptomes. In our studied cell populations, digital lysates converged to physical lysates ( r = 0.93), and the sample-to-sample repeatability was comparable to that of conventional analysis of a physical lysate ( r = 0.98). After determining the number of cells needed, single-cell transcriptomes were used to organize cells into a map by molecular similarity, and the map was validated by cell cycle-specific markers ( p = 0.003). Cell cycle regulatory genes were inferred using this molecular map and verified with siRNA assays. The study described here provides an effective approach, the generation and analysis of digital lysates, to investigate cellular heterogeneity.


Asunto(s)
Ciclo Celular/fisiología , Dispositivos Laboratorio en un Chip , Análisis de la Célula Individual/métodos , Transcriptoma/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Células Madre Embrionarias Humanas/fisiología , Humanos , Técnicas Analíticas Microfluídicas/métodos , ARN Interferente Pequeño/análisis , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA