Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 29(29): 9164-72, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23786424

RESUMEN

Polymer/clay nanocomposites show remarkably improved properties (mechanical properties, as well as decreased gas permeability and flammability, etc.) with respect to their microscale counterparts and pristine polymers. Due to the substantially apolar character of most of the organic polymers, natural occurring hydrophilic clays are modified into organophilic clays with consequent increase of the polymer/clay compatibility. Different strategies have been developed for the preparation of nanocomposites with improved properties, especially aimed at achieving the best dispersion of clay platelets in the polymer matrix. In this paper we present the preparation and characterization of polymer/clay nanocomposites composed of low-density polyethylene (LDPE) and natural clay, montmorillonite-containing bentonite. Two different forms of the clay have been considered: the first, a commercial organophilic bentonite (Nanofil 15), obtained by exchanging the natural cations with dimethyldioctadecylammonium (2C18) cations, and the second, obtained by performing a grafting reaction of an alkoxysilane containing a polymerizable group, 3-(trimethoxysilyl)propyl methacrylate (TSPM), onto Nanofil 15. Both the clays and LDPE/clay nanocomposites were characterized by thermal, FT-IR, and X-ray diffraction techniques. The samples were also investigated by means of (29)Si, (13)C, and (1)H solid-state NMR, obtaining information on the structural properties of the modified clays. Moreover, by exploiting the effect of bentonite paramagnetic (Fe(3+)) ions on proton spin-lattice relaxation times (T1's), useful information about the extent of the polymer-clay dispersion and their interfacial interactions could be obtained.

2.
Polymers (Basel) ; 10(8)2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-30960747

RESUMEN

In this paper we used high- and low-resolution solid state Nuclear Magnetic Resonance (NMR) techniques to investigate a series of polyisoprene samples filled with silica generated in situ from tetraethoxysilane by sol-gel process. In particular, ¹H spin-lattice and spin-spin relaxation times allowed us to get insights into the dynamic properties of both the polymer bulk and the bound rubber, and to obtain a comparative estimate of the amount of bound rubber in samples prepared with different compositions and sol-gel reaction times. In all samples, three fractions with different mobility could be distinguished by ¹H T2 and ascribed to loosely bound rubber, polymer bulk, and free chain ends. The amount of bound rubber was found to be dependent on sample preparation, and it resulted maximum in the sample showing the best dispersion of silica domains in the rubber matrix. The interpretation of the loosely bound rubber in terms of "glassy" behaviour was discussed, also on the basis of ¹H T1 and T1ρ data.

3.
Dalton Trans ; 43(43): 16183-96, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24874265

RESUMEN

The encapsulation of [Eu(dbm)3phen] into functionalized mesoporous silica nanoparticles (MSN) has been carried out to study the effect of chemical environments on the photoluminescence properties of the rare-earth complex. Surface functionalization was achieved by the reaction of the silanol groups on the surface of mesoporous silica with different organosilylating agents such as (3-aminopropyl)-triethoxysilane (APTES), (3-mercaptopropyl)-trimethoxysilane (MPTMS), and ethoxytrimethylsilane (ETMS). A change in the luminescence properties of the Eu(dbm)3phen complex has been observed on its encapsulation into surface modified mesoporous silica nanoparticles. The modification of photophysical properties is attributed to the interaction of Eu(dbm)3phen with the different chemical environments in the functionalized mesoporous silica nanoparticles (MSN). The luminescence properties of the rare-earth complex in surface-modified MSN increase in the order MSN < MSN-ETMS < MSN-MPTMS < MSN-APTES. The Eu(dbm)3phen complex encapsulated in the functionalized mesoporous silica nanoparticles shows an enhanced luminescence and an increased lifetime compared to the pure rare-earth complex in the solid state and that in unmodified MSN. This implies that some interactions of the lanthanide complexes take place during their incorporation process into the organically modified mesoporous silica nanoparticles. The organically modified mesoporous silica nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR) and N2 adsorption desorption measurements. The luminescence properties of the encapsulated Eu(dbm)3phen were studied in detail. Moreover, the effect of functionalized MSNs on the structural behaviour of the Eu(dbm)3phen was investigated by solid state nuclear magnetic resonance (SSNMR) techniques using an analogous diamagnetic model complex, Y(dbm)3phen, encapsulated into functionalized MSNs. These studies indicate that the encapsulated rare-earth complex shows some interactions with the functional groups anchored on the surface of MSNs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA