Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31562172

RESUMEN

Sulfur (S)-containing molecules play an important role in symbiotic nitrogen fixation and are critical components of nitrogenase and other iron-S proteins. S deficiency inhibits symbiotic nitrogen fixation by rhizobia. However, despite its importance, little is known about the sources of S that rhizobia utilize during symbiosis. We previously showed that Bradyrhizobium diazoefficiens USDA110T can assimilate both inorganic and organic S and that genes involved in organic S utilization are expressed during symbiosis. Here, we show that a B. diazoefficiens USDA110T mutant with a sulfonate monooxygenase (ssuD) insertion is defective in nitrogen fixation. Microscopy analyses revealed that the ΔssuD mutant was defective in root hair infection and that ΔssuD mutant bacteroids showed degradation compared to the wild-type strain. Moreover, the ΔssuD mutant was significantly more sensitive to hydrogen peroxide-mediated oxidative stress than the wild-type strain. Taken together, these results show that the ability of rhizobia to utilize organic S plays an important role in symbiotic nitrogen fixation. Since nodules have been reported to be an important source of reduced S used during symbiosis and nitrogen fixation, further research will be needed to determine the mechanisms involved in the regulation of S assimilation by rhizobia.IMPORTANCE Rhizobia form symbiotic associations with legumes that lead to the formation of nitrogen-fixing nodules. Sulfur-containing molecules play a crucial role in nitrogen fixation; thus, the rhizobia inside nodules require large amounts of sulfur. Rhizobia can assimilate both inorganic (sulfate) and organic (sulfonates) sources of sulfur. However, very little is known about rhizobial sulfur metabolism during symbiosis. In this report, we show that sulfonate utilization by Bradyrhizobium diazoefficiens is important for symbiotic nitrogen fixation in both soybean and cowpea. The symbiotic defect is probably due to increased sensitivity to oxidative stress from sulfur deficiency in the mutant strain defective for sulfonate utilization. The results of this study can be extended to other rhizobium-legume symbioses, as sulfonate utilization genes are widespread in these bacteria.


Asunto(s)
Alcanosulfonatos/metabolismo , Bradyrhizobium/enzimología , Bradyrhizobium/metabolismo , Oxigenasas de Función Mixta/metabolismo , Fijación del Nitrógeno/fisiología , Simbiosis/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bradyrhizobium/genética , Fabaceae/microbiología , Oxigenasas de Función Mixta/genética , Nodulación de la Raíz de la Planta , Rhizobium/metabolismo , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/microbiología , Glycine max/microbiología , Vigna/microbiología
2.
Proc Natl Acad Sci U S A ; 112(46): 14343-7, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26534993

RESUMEN

rRNA is essential for life because of its functional importance in protein synthesis. The rRNA (rrn) operon encoding 16S, 23S, and 5S rRNAs is located on the "main" chromosome in all bacteria documented to date and is frequently used as a marker of chromosomes. Here, our genome analysis of a plant-associated alphaproteobacterium, Aureimonas sp. AU20, indicates that this strain has its sole rrn operon on a small (9.4 kb), high-copy-number replicon. We designated this unusual replicon carrying the rrn operon on the background of an rrn-lacking chromosome (RLC) as the rrn-plasmid. Four of 12 strains close to AU20 also had this RLC/rrn-plasmid organization. Phylogenetic analysis showed that those strains having the RLC/rrn-plasmid organization represented one clade within the genus Aureimonas. Our finding introduces a previously unaddressed viewpoint into studies of genetics, genomics, and evolution in microbiology and biology in general.


Asunto(s)
Alphaproteobacteria/genética , Operón , Plásmidos/genética , ARN Bacteriano/genética , ARN Ribosómico/genética
3.
Appl Environ Microbiol ; 81(16): 5552-9, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26048934

RESUMEN

It was previously demonstrated that there are no indigenous strains of Bradyrhizobium japonicum forming nitrogen-fixing root nodule symbioses with soybean plants in arable field soils in Poland. However, bacteria currently classified within this species are present (together with Bradyrhizobium canariense) as indigenous populations of strains specific for nodulation of legumes in the Genisteae tribe. These rhizobia, infecting legumes such as lupins, are well established in Polish soils. The studies described here were based on soybean nodulation field experiments, established at the Poznan University of Life Sciences Experiment Station in Gorzyn, Poland, and initiated in the spring of 1994. Long-term research was then conducted in order to study the relation between B. japonicum USDA 110 and USDA 123, introduced together into the same location, where no soybean rhizobia were earlier detected, and nodulation and competitive success were followed over time. Here we report the extra-long-term saprophytic survival of B. japonicum strains nodulating soybeans that were introduced as inoculants 20 years earlier and where soybeans were not grown for the next 17 years. The strains remained viable and symbiotically competent, and molecular and immunochemical methods showed that the strains were undistinguishable from the original inoculum strains USDA 110 and USDA 123. We also show that the strains had balanced numbers and their mobility in soil was low. To our knowledge, this is the first report showing the extra-long-term persistence of soybean-nodulating strains introduced into Polish soils and the first analyzing the long-term competitive relations of USDA 110 and USDA 123 after the two strains, neither of which was native, were introduced into the environment almost 2 decades ago.


Asunto(s)
Bradyrhizobium/aislamiento & purificación , Glycine max/microbiología , Microbiología del Suelo , Polonia
4.
Appl Environ Microbiol ; 81(12): 4143-54, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25862225

RESUMEN

Extra-slow-growing bradyrhizobia from root nodules of field-grown soybeans harbor abundant insertion sequences (ISs) and are termed highly reiterated sequence-possessing (HRS) strains. We analyzed the genome organization of HRS strains with the focus on IS distribution and symbiosis island structure. Using pulsed-field gel electrophoresis, we consistently detected several plasmids (0.07 to 0.4 Mb) in the HRS strains (NK5, NK6, USDA135, 2281, USDA123, and T2), whereas no plasmids were detected in the non-HRS strain USDA110. The chromosomes of the six HRS strains (9.7 to 10.7 Mb) were larger than that of USDA110 (9.1 Mb). Using MiSeq sequences of 6 HRS and 17 non-HRS strains mapped to the USDA110 genome, we found that the copy numbers of ISRj1, ISRj2, ISFK1, IS1632, ISB27, ISBj8, and IS1631 were markedly higher in HRS strains. Whole-genome sequencing showed that the HRS strain NK6 had four small plasmids (136 to 212 kb) and a large chromosome (9,780 kb). Strong colinearity was found between 7.4-Mb core regions of the NK6 and USDA110 chromosomes. USDA110 symbiosis islands corresponded mainly to five small regions (S1 to S5) within two variable regions, V1 (0.8 Mb) and V2 (1.6 Mb), of the NK6 chromosome. The USDA110 nif gene cluster (nifDKENXSBZHQW-fixBCX) was split into two regions, S2 and S3, where ISRj1-mediated rearrangement occurred between nifS and nifB. ISs were also scattered in NK6 core regions, and ISRj1 insertion often disrupted some genes important for survival and environmental responses. These results suggest that HRS strains of soybean bradyrhizobia were subjected to IS-mediated symbiosis island shuffling and core genome degradation.


Asunto(s)
Bradyrhizobium/crecimiento & desarrollo , Bradyrhizobium/genética , Elementos Transponibles de ADN , Genoma Bacteriano , Islas Genómicas , Glycine max/microbiología , Nódulos de las Raíces de las Plantas/microbiología , ADN Bacteriano/genética , Electroforesis en Gel de Campo Pulsado , Filogenia , Plásmidos , Análisis de Secuencia de ADN
5.
PLoS Genet ; 8(8): e1002868, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22876202

RESUMEN

The symbiosis between rhizobial bacteria and legume plants has served as a model for investigating the genetics of nitrogen fixation and the evolution of facultative mutualism. We used deep sequence coverage (>100×) to characterize genomic diversity at the nucleotide level among 12 Sinorhizobium medicae and 32 S. meliloti strains. Although these species are closely related and share host plants, based on the ratio of shared polymorphisms to fixed differences we found that horizontal gene transfer (HGT) between these species was confined almost exclusively to plasmid genes. Three multi-genic regions that show the strongest evidence of HGT harbor genes directly involved in establishing or maintaining the mutualism with host plants. In both species, nucleotide diversity is 1.5-2.5 times greater on the plasmids than chromosomes. Interestingly, nucleotide diversity in S. meliloti but not S. medicae is highly structured along the chromosome - with mean diversity (θ(π)) on one half of the chromosome five times greater than mean diversity on the other half. Based on the ratio of plasmid to chromosome diversity, this appears to be due to severely reduced diversity on the chromosome half with less diversity, which is consistent with extensive hitchhiking along with a selective sweep. Frequency-spectrum based tests identified 82 genes with a signature of adaptive evolution in one species or another but none of the genes were identified in both species. Based upon available functional information, several genes identified as targets of selection are likely to alter the symbiosis with the host plant, making them attractive targets for further functional characterization.


Asunto(s)
Cromosomas Bacterianos , Medicago truncatula/microbiología , Metagenómica , ARN Ribosómico 16S/genética , Sinorhizobium meliloti/genética , Sinorhizobium/genética , Evolución Biológica , Transferencia de Gen Horizontal , Fijación del Nitrógeno/genética , Filogenia , Plásmidos/genética , Polimorfismo Genético , ARN Ribosómico 16S/clasificación , Análisis de Secuencia de ADN , Sinorhizobium/clasificación , Sinorhizobium meliloti/clasificación , Simbiosis/genética
6.
Int J Mol Sci ; 16(7): 16695-709, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26204840

RESUMEN

Bradyrhizobium japonicum is a nitrogen-fixing symbiont of soybean. In previous studies, transcriptomic profiling of B. japonicum USDA110, grown under various environmental conditions, revealed the highly induced gene aceA, encoding isocitrate lyase (ICL). The ICL catalyzes the conversion of isocitrate to succinate and glyoxylate in the glyoxylate bypass of the TCA cycle. Here, we evaluated the functional role of B. japonicum ICL under desiccation-induced stress conditions. We purified AceA (molecular mass = 65 kDa) from B. japonicum USDA110, using a His-tag and Ni-NTA column approach, and confirmed its ICL enzyme activity. The aceA mutant showed higher sensitivity to desiccation stress (27% relative humidity (RH)), compared to the wild type. ICL activity of the wild type strain increased approximately 2.5-fold upon exposure to 27% RH for 24 h. The aceA mutant also showed an increased susceptibility to salt stress. Gene expression analysis of aceA using qRT-PCR revealed a 148-fold induction by desiccation, while other genes involved in the glyoxylate pathway were not differentially expressed in this condition. Transcriptome analyses revealed that stress-related genes, such as chaperones, were upregulated in the wild-type under desiccating conditions, even though fold induction was not dramatic (ca. 1.5-2.5-fold).


Asunto(s)
Proteínas Bacterianas/metabolismo , Bradyrhizobium/metabolismo , Isocitratoliasa/metabolismo , Estrés Fisiológico , Proteínas Bacterianas/genética , Bradyrhizobium/enzimología , Bradyrhizobium/genética , Desecación , Isocitratoliasa/genética , Transcriptoma
7.
Mol Plant Microbe Interact ; 27(4): 328-35, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24283939

RESUMEN

The nolR gene encodes a negatively acting, transcriptional regulatory protein of core Nod-factor biosynthetic genes in the sinorhizobia. Although previous reports showed that nolR modulates Nod-factor production and enhances nodulation speed of Sinorhizobium meliloti on alfalfa, there have been no reports for the symbiotic function of this gene in the S. medicae-Medicago truncatula symbiosis. Here, we constructed an nolR mutant of S. medicae WSM419 and evaluated mutant and wild-type strains for their nodulation ability, competitiveness, host specificity, and density-dependent nodulation phenotypes. When the mutant was inoculated at low and medium population densities, it showed enhanced nodule formation during the initial stages of nodulation. Results of quantitative competitive nodulation assays indicated that an nolR mutant had 2.3-fold greater competitiveness for nodulation on M. truncatula 'A17' than did the wild-type strain. Moreover, the nodulation phenotype of the nolR mutant differed among Medicago genotypes and showed significantly enhanced nodule development on M. tricycla. Taken together, these results indicated that mutation of nolR in S. medicae positively influenced nodule initiation, competitive nodulation, and nodule development at later nodulation stages. This may allow nolR mutants of S. medicae to have a selective advantage under field conditions.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Medicago/genética , Medicago/microbiología , Nodulación de la Raíz de la Planta/fisiología , Sinorhizobium/clasificación , Sinorhizobium/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genotipo , Mutación , Simbiosis/genética , Simbiosis/fisiología
8.
Opt Express ; 22(16): 19069-77, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25320993

RESUMEN

The wide-gamut system colorimetry has been standardized for ultra-high definition television (UHDTV). The chromaticities of the primaries are designed to lie on the spectral locus to cover major standard system colorimetries and real object colors. Although monochromatic light sources are required for a display to perfectly fulfill the system colorimetry, highly saturated emission colors using recent quantum dot technology may effectively achieve the wide gamut. This paper presents simulation results on the chromaticities of highly saturated non-monochromatic light sources and gamut coverage of real object colors to be considered in designing wide-gamut displays with color filters for the UHDTV.

9.
Opt Express ; 22(5): 6040-6, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24663939

RESUMEN

The slanted-edge method specified in ISO Standard 12233, which measures the modulation transfer function (MTF) by analyzing an image of a slightly slanted knife-edge target, is not robust against noise because it takes the derivative of each data line in the edge-angle estimation. We propose here a modified method that estimates the edge angle by fitting a two-dimensional function to the image data. The method has a higher accuracy, precision, and robustness against noise than the ISO 12233 method and is applicable to any arbitrary pixel array, enabling a multidirectional MTF estimate in a single measurement of a starburst image.

10.
Biosci Microbiota Food Health ; 43(3): 250-259, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966055

RESUMEN

Kimoto-type Japanese rice wine (sake) has a wide variety of flavors, as the predominant microbes, including lactic acid bacteria (LAB) and nitrate-reducing bacteria, that spontaneously proliferate in the fermentation starter vary depending on the brewery. In this study, we traced the microbiota in four lots of starters manufactured in a newly established brewery and evaluated the lot-to-lot variation and characteristics of the microbiota in the brewery. The results of a 16S ribosomal RNA amplicon analysis showed that the starters brewed in the second brewing year had a more diverse microbiota than those in the first brewing year. Among the LAB predominated at the middle production stage, lactococci, including Leuconostoc spp., were detected in all the lots, while lactobacilli predominated for the first time in the second year. These results suggest that repeated brewing increased microbial diversity and altered the microbial transition pattern in the kimoto-style fermentation starters. Phylogenetic analyses for the LAB isolates from each starter identified Leuconostoc suionicum, Leuconostoc citreum, and Leuconostoc mesenteroides as predominant lactococci as well as a unique lactobacillus in place of Latilactobacillus sakei. We also found that a rice koji-derived Staphylococcus gallinarum with nitrate-reducing activity was generally predominant during the early production stage, suggesting that there was a case in which staphylococci played a role in nitrite production in the starters. These findings are expected to contribute to the understanding of the diversity of microbiota in kimoto-type sake brewing and enable control of the microbiota for consistent sake quality.

11.
Microbes Environ ; 39(3)2024.
Artículo en Inglés | MEDLINE | ID: mdl-39261062

RESUMEN

Although microbial inoculation may be effective for sustainable crop production, detrimental aspects have been argued because of the potential of inoculated microorganisms to behave as invaders and negatively affect the microbial ecosystem. We herein compared the impact of rhizobial inoculation on the soil bacterial community with that of agricultural land-use changes using a 16S rRNA amplicon ana-lysis. Soybean plants were cultivated with and without five types of bradyrhizobial inoculants (Bradyrhizobium diazoefficiens or Bradyrhizobium ottawaense) in experimental fields of Andosol, and the high nodule occupancy (35-72%) of bradyrhizobial inoculants was confirmed by nosZ PCR. However, bradyrhizobial inoculants did not significantly affect Shannon's diversity index (α-diversity) or shifts (ß-diversity) in the bacterial community in the soils. Moreover, the soil bacterial community was significantly affected by land-use types (conventional cropping, organic cropping, and original forest), where ß-diversity correlated with soil chemical properties (pH, carbon, and nitrogen contents). Therefore, the effects of bradyrhizobial inoculation on bacterial communities in bulk soil were minor, regardless of high nodule occupancy. We also observed a correlation between the relative abundance of bacterial classes (Alphaproteobacteria, Gammaproteobacteria, and Gemmatimonadetes) and land-use types or soil chemical properties. The impact of microbial inoculation on soil microbial ecosystems has been exami-ned to a limited extent, such as rhizosphere communities and viability. In the present study, we found that bacterial community shifts in soil were more strongly affected by land usage than by rhizobial inoculation. Therefore, the results obtained herein highlight the importance of assessing microbial inoculants in consideration of the entire land management system.


Asunto(s)
Agricultura , Bacterias , Bradyrhizobium , Glycine max , Microbiota , ARN Ribosómico 16S , Microbiología del Suelo , Suelo , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Suelo/química , Glycine max/microbiología , Glycine max/crecimiento & desarrollo , Bradyrhizobium/clasificación , Bradyrhizobium/genética , Bradyrhizobium/aislamiento & purificación , Bradyrhizobium/fisiología , Inoculantes Agrícolas/fisiología , Inoculantes Agrícolas/clasificación , ADN Bacteriano/genética , Biodiversidad
12.
Food Microbiol ; 35(2): 136-42, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23664265

RESUMEN

Lettuce and spinach are increasingly implicated in foodborne illness outbreaks due to contamination by Escherichia coli O157:H7. While this bacterium has been shown to colonize and survive on lettuce leaf surfaces, little is known about its interaction with the roots of growing lettuce plants. In these studies, a microarray analyses, mutant construction and confocal microscopy were used to gain an understanding of structure and function of bacterial genes involved in the colonization and growth of E. coli O157:H7 on lettuce roots. After three days of interaction with lettuce roots, 94 and 109 E. coli O157:H7 genes were significantly up- and down-regulated at least 1.5 fold, respectively. While genes involved in biofilm modulation (ycfR and ybiM) were significantly up-regulated, 40 of 109 (37%) of genes involved in protein synthesis were significantly repressed. E. coli O157:H7 was 2 logs less efficient in lettuce root colonization than was E. coli K12. We also unambiguously showed that a ΔycfR mutant of E. coli O157:H7 was unable to attach to or colonize lettuce roots. Taken together these results indicate that bacterial genes involved in attachment and biofilm formation are likely important for contamination of lettuce plants with Shiga toxin-producing E. coli strains.


Asunto(s)
Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Lactuca/microbiología , Raíces de Plantas/crecimiento & desarrollo , Transcripción Genética , Adhesión Bacteriana , Biopelículas , Escherichia coli O157/aislamiento & purificación , Escherichia coli O157/fisiología , Proteínas de Escherichia coli/metabolismo , Contaminación de Alimentos/análisis , Perfilación de la Expresión Génica
13.
Sci Rep ; 13(1): 18862, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914789

RESUMEN

N2O is an important greenhouse gas influencing global warming, and agricultural land is the predominant (anthropogenic) source of N2O emissions. Here, we report the high N2O-reducing activity of Bradyrhizobium ottawaense, suggesting the potential for efficiently mitigating N2O emission from agricultural lands. Among the 15 B. ottawaense isolates examined, the N2O-reducing activities of most (13) strains were approximately five-fold higher than that of Bradyrhizobium diazoefficiens USDA110T under anaerobic conditions. This robust N2O-reducing activity of B. ottawaense was confirmed by N2O reductase (NosZ) protein levels and by mitigation of N2O emitted by nodule decomposition in laboratory system. While the NosZ of B. ottawaense and B. diazoefficiens showed high homology, nosZ gene expression in B. ottawaense was over 150-fold higher than that in B. diazoefficiens USDA110T, suggesting the high N2O-reducing activity of B. ottawaense is achieved by high nos expression. Furthermore, we examined the nos operon transcription start sites and found that, unlike B. diazoefficiens, B. ottawaense has two transcription start sites under N2O-respiring conditions, which may contribute to the high nosZ expression. Our study indicates the potential of B. ottawaense for effective N2O reduction and unique regulation of nos gene expression towards the high performance of N2O mitigation in the soil.


Asunto(s)
Bradyrhizobium , Óxido Nitroso , Óxido Nitroso/análisis , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Suelo , Expresión Génica , Microbiología del Suelo , Desnitrificación
14.
Appl Environ Microbiol ; 78(6): 1752-64, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22247152

RESUMEN

An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.


Asunto(s)
Escherichia coli K12/genética , Escherichia coli O157/genética , Lactuca/microbiología , Hojas de la Planta/microbiología , Transcriptoma , Adhesión Bacteriana , Escherichia coli K12/fisiología , Escherichia coli O157/fisiología , Análisis por Micromatrices
15.
ISME J ; 16(1): 112-121, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34272493

RESUMEN

Symbiosis between organisms influences their evolution via adaptive changes in genome architectures. Immunity of soybean carrying the Rj2 allele is triggered by NopP (type III secretion system [T3SS]-dependent effector), encoded by symbiosis island A (SymA) in B. diazoefficiens USDA122. This immunity was overcome by many mutants with large SymA deletions that encompassed T3SS (rhc) and N2 fixation (nif) genes and were bounded by insertion sequence (IS) copies in direct orientation, indicating homologous recombination between ISs. Similar deletion events were observed in B. diazoefficiens USDA110 and B. japonicum J5. When we cultured a USDA122 strain with a marker gene sacB inserted into the rhc gene cluster, most sucrose-resistant mutants had deletions in nif/rhc gene clusters, similar to the mutants above. Some deletion mutants were unique to the sacB system and showed lower competitive nodulation capability, indicating that IS-mediated deletions occurred during free-living growth and the host plants selected the mutants. Among 63 natural bradyrhizobial isolates, 2 possessed long duplications (261-357 kb) harboring nif/rhc gene clusters between IS copies in direct orientation via homologous recombination. Therefore, the structures of symbiosis islands are in a state of flux via IS-mediated duplications and deletions during rhizobial saprophytic growth, and host plants select mutualistic variants from the resultant pools of rhizobial populations. Our results demonstrate that homologous recombination between direct IS copies provides a natural mechanism generating deletions and duplications on symbiosis islands.


Asunto(s)
Bradyrhizobium , Rhizobium , Bradyrhizobium/genética , Elementos Transponibles de ADN , Islas Genómicas , Nodulación de la Raíz de la Planta , Rhizobium/genética , Glycine max , Simbiosis/genética
16.
Mol Plant Microbe Interact ; 24(4): 451-7, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21190435

RESUMEN

Strains of Bradyrhizobium spp. form nitrogen-fixing symbioses with many legumes, including soybean. Although inorganic sulfur is preferred by bacteria in laboratory conditions, sulfur in agricultural soil is mainly present as sulfonates and sulfur esters. Here, we show that Bradyrhizobium japonicum and B. elkanii strains were able to utilize sulfate, cysteine, sulfonates, and sulfur-ester compounds as sole sulfur sources for growth. Expression and functional analysis revealed that two sets of gene clusters (bll6449 to bll6455 or bll7007 to bll7011) are important for utilization of sulfonates sulfur source. The bll6451 or bll7010 genes are also expressed in the symbiotic nodules. However, B. japonicum mutants defective in either of the sulfonate utilization operons were not affected for symbiosis with soybean, indicating the functional redundancy or availability of other sulfur sources in planta. In accordance, B. japonicum bacteroids possessed significant sulfatase activity. These results indicate that strains of Bradyrhizobium spp. likely use organosulfur compounds for growth and survival in soils, as well as for legume nodulation and nitrogen fixation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Genes Bacterianos , Glycine max/microbiología , Compuestos de Azufre/metabolismo , Proteínas Bacterianas/genética , Bradyrhizobium/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Familia de Multigenes , Mutación , Fijación del Nitrógeno/genética , Operón , Nodulación de la Raíz de la Planta/genética , Glycine max/genética , Glycine max/metabolismo , Sulfatasas/genética , Sulfatasas/metabolismo , Simbiosis
17.
Plant Physiol ; 153(4): 1808-22, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20534735

RESUMEN

Nodulation of soybean (Glycine max) root hairs by the nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum is a complex process coordinated by the mutual exchange of diffusible signal molecules. A metabolomic study was performed to identify small molecules produced in roots and root hairs during the rhizobial infection process. Metabolites extracted from roots and root hairs mock inoculated or inoculated with B. japonicum were analyzed by gas chromatography-mass spectrometry and ultraperformance liquid chromatography-quadrupole time of flight-mass spectrometry. These combined approaches identified 2,610 metabolites in root hairs. Of these, 166 were significantly regulated in response to B. japonicum inoculation, including various (iso)flavonoids, amino acids, fatty acids, carboxylic acids, and various carbohydrates. Trehalose was among the most strongly induced metabolites produced following inoculation. Subsequent metabolomic analyses of root hairs inoculated with a B. japonicum mutant defective in the trehalose synthase, trehalose 6-phosphate synthase, and maltooligosyltrehalose synthase genes showed that the trehalose detected in the inoculated root hairs was primarily of bacterial origin. Since trehalose is generally considered an osmoprotectant, these data suggest that B. japonicum likely experiences osmotic stress during the infection process, either on the root hair surface or within the infection thread.


Asunto(s)
Bradyrhizobium/metabolismo , Glycine max/microbiología , Raíces de Plantas/metabolismo , Simbiosis , Bradyrhizobium/fisiología , Cromatografía de Gases y Espectrometría de Masas , Metaboloma , Raíces de Plantas/microbiología , ARN de Planta/genética , Glycine max/genética , Glycine max/metabolismo , Trehalosa/biosíntesis
18.
Appl Environ Microbiol ; 76(4): 1071-81, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20023090

RESUMEN

Trehalose, a disaccharide accumulated by many microorganisms, acts as a protectant during periods of physiological stress, such as salinity and desiccation. Previous studies reported that the trehalose biosynthetic genes (otsA, treS, and treY) in Bradyrhizobium japonicum were induced by salinity and desiccation stresses. Functional mutational analyses indicated that disruption of otsA decreased trehalose accumulation in cells and that an otsA treY double mutant accumulated an extremely low level of trehalose. In contrast, trehalose accumulated to a greater extent in a treS mutant, and maltose levels decreased relative to that seen with the wild-type strain. Mutant strains lacking the OtsA pathway, including the single, double, and triple DeltaotsA, DeltaotsA DeltatreS and DeltaotsA DeltatreY, and DeltaotsA DeltatreS DeltatreY mutants, were inhibited for growth on 60 mM NaCl. While mutants lacking functional OtsAB and TreYZ pathways failed to grow on complex medium containing 60 mM NaCl, there was no difference in the viability of the double mutant strain when cells were grown under conditions of desiccation stress. In contrast, mutants lacking a functional TreS pathway were less tolerant of desiccation stress than the wild-type strain. Soybean plants inoculated with mutants lacking the OtsAB and TreYZ pathways produced fewer mature nodules and a greater number of immature nodules relative to those produced by the wild-type strain. Taken together, results of these studies indicate that stress-induced trehalose biosynthesis in B. japonicum is due mainly to the OtsAB pathway and that the TreS pathway is likely involved in the degradation of trehalose to maltose. Trehalose accumulation in B. japonicum enhances survival under conditions of salinity stress and plays a role in the development of symbiotic nitrogen-fixing root nodules on soybean plants.


Asunto(s)
Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Genes Bacterianos , Trehalosa/biosíntesis , Desecación , Expresión Génica , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Maltosa/metabolismo , Modelos Biológicos , Mutación , Fenotipo , Nodulación de la Raíz de la Planta , Glycine max/microbiología , Estrés Fisiológico , Simbiosis , Trehalosa/metabolismo
19.
Microbes Environ ; 35(3)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32554940

RESUMEN

Soybean plants host endosymbiotic dinitrogen (N2)-fixing bacteria from the genus Bradyrhizobium. Under oxygen-limiting conditions, Bradyrhizobium diazoefficiens and Bradyrhizobium japonicum perform denitrification by sequentially reducing nitrate (NO3-) to nitrous oxide (N2O) or N2. The anaerobic reduction of NO3- to N2O was previously shown to be lower in B. japonicum than in B. diazoefficiens due to impaired periplasmic nitrate reductase (Nap) activity in B. japonicum. We herein demonstrated that impaired Nap activity in B. japonicum was due to low Nap protein levels, which may be related to a decline in the production of FixP and FixO proteins by the cbb3-type oxidase.


Asunto(s)
Bradyrhizobium/metabolismo , Desnitrificación , Nitrato-Reductasa/metabolismo , Anaerobiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/crecimiento & desarrollo , Mutación , Nitrato-Reductasa/genética , Nitratos/metabolismo , Periplasma/metabolismo
20.
Microbes Environ ; 35(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-31932539

RESUMEN

Diverse members of Bradyrhizobium diazoefficiens, B. japonicum, and B. ottawaense were isolated from the roots of field-grown sorghum plants in Fukushima, and classified into "Rhizobia" with nodulated soybeans, "Free-living diazotrophs", and "Non-diazotrophs" by nitrogen fixation and nodulation assays. Genome analyses revealed that B. ottawaense members possessed genes for N2O reduction, but lacked those for the Type VI secretion system (T6SS). T6SS is a new bacterial weapon against microbial competitors. Since T6SS-possessing B. diazoefficiens and B. japonicum have mainly been isolated from soybean nodules in Japan, T6SS-lacking B. ottawaense members may be a cryptic lineage of soybean bradyrhizobia in Japan.


Asunto(s)
Biodiversidad , Bradyrhizobium/genética , Oxidorreductasas/genética , Sorghum/microbiología , Sistemas de Secreción Tipo VI/deficiencia , Bradyrhizobium/clasificación , Bradyrhizobium/aislamiento & purificación , Variación Genética , Fijación del Nitrógeno/genética , Filogenia , Nodulación de la Raíz de la Planta/genética , Raíces de Plantas/microbiología , Rhizobium/clasificación , Rhizobium/genética , Rhizobium/aislamiento & purificación , Sistemas de Secreción Tipo VI/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA