Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nucleic Acids Res ; 51(21): 11941-11951, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37897358

RESUMEN

Bacteriophages (phages) are viruses that infect bacteria and archaea. To fend off invading phages, the hosts have evolved a variety of anti-phage defense mechanisms. Gabija is one of the most abundant prokaryotic antiviral systems and consists of two proteins, GajA and GajB. GajA has been characterized experimentally as a sequence-specific DNA endonuclease. Although GajB was previously predicted to be a UvrD-like helicase, its function is unclear. Here, we report the results of structural and functional analyses of GajB. The crystal structure of GajB revealed a UvrD-like domain architecture, including two RecA-like core and two accessory subdomains. However, local structural elements that are important for the helicase function of UvrD are not conserved in GajB. In functional assays, GajB did not unwind or bind various types of DNA substrates. We demonstrated that GajB interacts with GajA to form a heterooctameric Gabija complex, but GajB did not exhibit helicase activity when bound to GajA. These results advance our understanding of the molecular mechanism underlying Gabija anti-phage defense and highlight the role of GajB as a component of a multi-subunit antiviral complex in bacteria.


Asunto(s)
Bacillus cereus , Bacteriófagos , Antivirales , Bacterias/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , ADN , ADN Helicasas/metabolismo , Proteínas , Bacillus cereus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
Nucleic Acids Res ; 50(4): 2363-2376, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35166843

RESUMEN

Bacteria and archaea use the CRISPR-Cas system to fend off invasions of bacteriophages and foreign plasmids. In response, bacteriophages encode anti-CRISPR (Acr) proteins that potently inhibit host Cas proteins to suppress CRISPR-mediated immunity. AcrIE4-F7, which was isolated from Pseudomonas citronellolis, is a fused form of AcrIE4 and AcrIF7 that inhibits both type I-E and type I-F CRISPR-Cas systems. Here, we determined the structure of AcrIE4-F7 and identified its Cas target proteins. The N-terminal AcrIE4 domain adopts a novel α-helical fold that targets the PAM interaction site of the type I-E Cas8e subunit. The C-terminal AcrIF7 domain exhibits an αß fold like native AcrIF7, which disables target DNA recognition by the PAM interaction site in the type I-F Cas8f subunit. The two Acr domains are connected by a flexible linker that allows prompt docking onto their cognate Cas8 targets. Conserved negative charges in each Acr domain are required for interaction with their Cas8 targets. Our results illustrate a common mechanism by which AcrIE4-F7 inhibits divergent CRISPR-Cas types.


Asunto(s)
Bacteriófagos , Proteínas Asociadas a CRISPR , Bacteriófagos/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN/metabolismo , Proteínas Virales/metabolismo
3.
FASEB J ; 35(6): e21630, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33982347

RESUMEN

The acidic nuclear phosphoprotein 32 family member A (ANP32A) is a cellular host factor that determines the host tropism of the viral polymerase (vPol) of avian influenza viruses (AIVs). Compared with human ANP32A (hANP32A), chicken ANP32A contains an additional 33 amino acid residues (176-208) duplicated from amino acid residues 149-175 (27 residues), suggesting that these residues could be involved in increasing vPol activity by strengthening interactions between ANP32A and vPol. However, the molecular interactions and functional roles of the 27 residues within hANP32A during AIV vPol activity remain unclear. Here, we examined the functional role of 27 residues of hANP32A based on comparisons with other human (h) ANP32 family members. It was notable that unlike hANP32A and hANP32B, hANP32C could not support vPol activity or replication of AIVs, despite the fact that hANP32C shares a higher sequence identity with hANP32A than hANP32B. Pairwise comparison between hANP32A and hANP32C revealed that Asp149 (D149) and Asp152 (D152) are involved in hydrogen bonding and electrostatic interactions, respectively, which support vPol activity. Mutation of these residues reduced the interaction between hANP32A and vPol. Finally, we demonstrated that precise substitution of the identified residues within chicken ANP32A via homology-directed repair using the CRISPR/Cas9 system resulted in a marked reduction of viral replication in chicken cells. These results increase our understanding of ANP32A function and may facilitate the development of AIV-resistant chickens via precise modification of residues within ANP32A.


Asunto(s)
Ácido Aspártico/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Virus de la Influenza A/enzimología , Mutación , Proteínas Nucleares/metabolismo , Infecciones por Orthomyxoviridae/virología , Proteínas de Unión al ARN/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Ácido Aspártico/química , Ácido Aspártico/genética , Pollos , ADN Polimerasa Dirigida por ADN/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Infecciones por Orthomyxoviridae/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Homología de Secuencia , Proteínas Virales/genética
4.
Nucleic Acids Res ; 48(17): 9959-9968, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32810226

RESUMEN

The CRISPR-Cas system provides adaptive immunity for bacteria and archaea to combat invading phages and plasmids. Phages evolved anti-CRISPR (Acr) proteins to neutralize the host CRISPR-Cas immune system as a counter-defense mechanism. AcrIF7 in Pseudomonas aeruginosa prophages strongly inhibits the type I-F CRISPR-Cas system. Here, we determined the solution structure of AcrIF7 and identified its target, Cas8f of the Csy complex. AcrIF7 adopts a novel ß1ß2α1α2ß3 fold and interacts with the target DNA binding site of Cas8f. Notably, AcrIF7 competes with AcrIF2 for the same binding interface on Cas8f without common structural motifs. AcrIF7 binding to Cas8f is driven mainly by electrostatic interactions that require position-specific surface charges. Our findings suggest that Acrs of divergent origin may have acquired specificity to a common target through convergent evolution of their surface charge configurations.


Asunto(s)
Bacteriófagos/química , Sistemas CRISPR-Cas , Proteínas Virales/química , Bacteriófagos/genética , Bacteriófagos/patogenicidad , Sitios de Unión , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/virología , Proteínas Virales/metabolismo
5.
Nucleic Acids Res ; 48(13): 7584-7594, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32544231

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins provide adaptive immunity to prokaryotes against invading phages and plasmids. As a countermeasure, phages have evolved anti-CRISPR (Acr) proteins that neutralize the CRISPR immunity. AcrIIA5, isolated from a virulent phage of Streptococcus thermophilus, strongly inhibits diverse Cas9 homologs, but the molecular mechanism underlying the Cas9 inhibition remains unknown. Here, we report the solution structure of AcrIIA5, which features a novel α/ß fold connected to an N-terminal intrinsically disordered region (IDR). Remarkably, truncation of the N-terminal IDR abrogates the inhibitory activity against Cas9, revealing that the IDR is essential for Cas9 inhibition by AcrIIA5. Progressive truncations and mutations of the IDR illustrate that the disordered region not only modulates the association between AcrIIA5 and Cas9-sgRNA, but also alters the catalytic efficiency of the inhibitory complex. The length of IDR is critical for the Cas9-sgRNA recognition by AcrIIA5, whereas the charge content of IDR dictates the inhibitory activity. Conformational plasticity of IDR may be linked to the broad-spectrum inhibition of Cas9 homologs by AcrIIA5. Identification of the IDR as the main determinant for Cas9 inhibition expands the inventory of phage anti-CRISPR mechanisms.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Virales/química , Bacteriófagos/química , Bacteriófagos/patogenicidad , Proteínas Intrínsecamente Desordenadas/metabolismo , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Dominios Proteicos , Streptococcus thermophilus/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
6.
Nucleic Acids Res ; 46(1): 485-492, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29182776

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins provide bacteria with RNA-based adaptive immunity against phage infection. To counteract this defense mechanism, phages evolved anti-CRISPR (Acr) proteins that inactivate the CRISPR-Cas systems. AcrIIA1, encoded by Listeria monocytogenes prophages, is the most prevalent among the Acr proteins targeting type II-A CRISPR-Cas systems and has been used as a marker to identify other Acr proteins. Here, we report the crystal structure of AcrIIA1 and its RNA-binding affinity. AcrIIA1 forms a dimer with a novel two helical-domain architecture. The N-terminal domain of AcrIIA1 exhibits a helix-turn-helix motif similar to transcriptional factors. When overexpressed in Escherichia coli, AcrIIA1 associates with RNAs, suggesting that AcrIIA1 functions via nucleic acid recognition. Taken together, the unique structural and functional features of AcrIIA1 suggest its distinct mode of Acr activity, expanding the diversity of the inhibitory mechanisms employed by Acr proteins.


Asunto(s)
Listeria monocytogenes/virología , Modelos Moleculares , Profagos/metabolismo , Dominios Proteicos , Proteínas Virales/química , Secuencia de Aminoácidos , Sistemas CRISPR-Cas/genética , Cristalografía por Rayos X , Escherichia coli/genética , Secuencias Hélice-Giro-Hélice , Mutación , Profagos/genética , Unión Proteica , Multimerización de Proteína , ARN/química , ARN/genética , ARN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
7.
Int J Mol Sci ; 21(7)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244797

RESUMEN

Human SNF5 and BAF155 constitute the core subunit of multi-protein SWI/SNF chromatin-remodeling complexes that are required for ATP-dependent nucleosome mobility and transcriptional control. Human SNF5 (hSNF5) utilizes its repeat 1 (RPT1) domain to associate with the SWIRM domain of BAF155. Here, we employed X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and various biophysical methods in order to investigate the detailed binding mechanism between hSNF5 and BAF155. Multi-angle light scattering data clearly indicate that hSNF5171-258 and BAF155SWIRM are both monomeric in solution and they form a heterodimer. NMR data and crystal structure of the hSNF5171-258/BAF155SWIRM complex further reveal a unique binding interface, which involves a coil-to-helix transition upon protein binding. The newly formed αN helix of hSNF5171-258 interacts with the ß2-α1 loop of hSNF5 via hydrogen bonds and it also displays a hydrophobic interaction with BAF155SWIRM. Therefore, the N-terminal region of hSNF5171-258 plays an important role in tumorigenesis and our data will provide a structural clue for the pathogenesis of Rhabdoid tumors and malignant melanomas that originate from mutations in the N-terminal loop region of hSNF5.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Mutación , Nucleosomas/genética , Proteína SMARCB1/genética , Factores de Transcripción/genética , Sitios de Unión/genética , Dicroismo Circular , Cristalografía por Rayos X , Regulación de la Expresión Génica , Humanos , Espectroscopía de Resonancia Magnética , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Nucleosomas/metabolismo , Unión Proteica , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patología , Proteína SMARCB1/química , Proteína SMARCB1/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
8.
J Biol Chem ; 293(8): 2744-2754, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29348170

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins provide microbial adaptive immunity against bacteriophages. In type I-F CRISPR-Cas systems, multiple Cas proteins (Csy1-4) compose a surveillance complex (Csy complex) with CRISPR RNA (crRNA) for target recognition. Here, we report the biochemical characterization of the Csy1-Csy2 subcomplex from Xanthomonas albilineans, including the analysis of its interaction with crRNA and AcrF2, an anti-CRISPR (Acr) protein from a phage that infects Pseudomonas aeruginosa The X. albilineans Csy1 and Csy2 proteins (XaCsy1 and XaCsy2, respectively) formed a stable heterodimeric complex that specifically bound the 8-nucleotide (nt) 5'-handle of the crRNA. In contrast, the XaCsy1-XaCsy2 heterodimer exhibited reduced affinity for the 28-nt X. albilineans CRISPR repeat RNA containing the 5'-handle sequence. Chromatographic and calorimetric analyses revealed tight binding between the Acr protein from the P. aeruginosa phage and the heterodimeric subunit of the X. albilineans Csy complex, suggesting that AcrF2 recognizes conserved features of Csy1-Csy2 heterodimers. We found that neither XaCsy1 nor XaCsy2 alone forms a stable complex with AcrF2 and the 5'-handle RNA, indicating that XaCsy1-XaCsy2 heterodimerization is required for binding them. We also solved the crystal structure of AcrF2 to a resolution of 1.34 Å, enabling a more detailed structural analysis of the residues involved in the interactions with the Csy1-Csy2 heterodimer. Our results provide information about the order of events during the formation of the multisubunit crRNA-guided surveillance complex and suggest that the Acr protein inactivating type I-F CRISPR-Cas systems has broad specificity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Modelos Moleculares , ARN Bacteriano/metabolismo , Xanthomonas/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/antagonistas & inhibidores , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Cristalografía por Rayos X , Estabilidad de Enzimas , Isoenzimas , Cinética , Mutación , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Interferencia de ARN , Estabilidad del ARN , ARN Bacteriano/química , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Especificidad de la Especie , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Xanthomonas/enzimología , Xanthomonas/inmunología
9.
FASEB J ; 32(5): 2563-2573, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29295863

RESUMEN

NANOG plays a pivotal role in pluripotency acquisition and lineage specification in higher vertebrates, and its expression is restricted to primordial germ cells (PGCs) during early embryonic development. Mammalian NANOG self-associates via conserved tryptophan-repeat motifs in the C-terminal domain (CTD) to maintain pluripotency. Avian NANOG, however, lacks the conserved motifs, and the molecular mechanism underlying the biologic function is not clearly understood. Here, using spectroscopic and biochemical methods as well as cell-based assays, we report that chicken NANOG (cNANOG) oligomerizes through its CTD via a novel folding-upon-binding mechanism. The CTD of cNANOG is disordered as a monomer and associates into an α-helical multimer driven by intermolecular hydrophobic interactions. Mutation of key aromatic residues in the CTD abrogates the self-association, leading to a loss of the proliferation of chicken PGCs and blastoderm cells. Our results demonstrate that the CTD of cNANOG belongs to a novel IDP that switches into a helical oligomer via self-association, enabling the maintenance of PGCs and blastoderm cells.-Choi, H. J., Kim, I., Lee, H. J., Park, Y. H., Suh, J.-Y., Han, J. Y. Chicken NANOG self-associates via a novel folding-upon-binding mechanism.


Asunto(s)
Proteínas Aviares , Blastodermo/metabolismo , Pollos/metabolismo , Células Germinativas/metabolismo , Proteína Homeótica Nanog , Pliegue de Proteína , Multimerización de Proteína , Secuencias de Aminoácidos , Animales , Proteínas Aviares/química , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Blastodermo/citología , Embrión de Pollo , Pollos/genética , Células Germinativas/citología , Interacciones Hidrofóbicas e Hidrofílicas , Proteína Homeótica Nanog/química , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Dominios Proteicos
10.
Mol Cell ; 44(2): 203-13, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22017869

RESUMEN

In mammals, the Sirtuins are composed of seven Sir2 orthologs (Sirt1-7) with a conserved deacetylase core that utilizes NAD(+) as a cofactor. Interestingly, the deacetylase core of Sirt1 by itself has no catalytic activity. We found within the C-terminal domain a 25 aa sequence that is essential for Sirt1 activity (ESA). Our results indicate that the ESA region interacts with and functions as an "on switch" for the deacetylase core. The endogenous Sirt1 inhibitor DBC1, which also binds to the deacetylase core, competes with and inhibits the ESA region from interacting with the deacetylase core. We discovered an ESA mutant peptide that can bind to the deacetylase core and inhibit Sirt1 in trans. By using this mutant peptide, we were able to inhibit Sirt1 activity and to increase the chemosensitivity of androgen-refractory prostate cancer cells. Therefore, the ESA region is a potential target for development of therapies to regulate Sirt1.


Asunto(s)
Péptidos/química , Sirtuina 1/metabolismo , Acetilación , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Humanos , Ratones , Datos de Secuencia Molecular , Mutación , Péptidos/farmacología , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/química , Proteínas Supresoras de Tumor/metabolismo
11.
J Biol Chem ; 291(25): 13229-42, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27076633

RESUMEN

The yeast Nrd1 interacts with the C-terminal domain (CTD) of RNA polymerase II (RNApII) through its CTD-interacting domain (CID) and also associates with the nuclear exosome, thereby acting as both a transcription termination and RNA processing factor. Previously, we found that the Nrd1 CID is required to recruit the nuclear exosome to the Nrd1 complex, but it was not clear which exosome subunits were contacted. Here, we show that two nuclear exosome cofactors, Mpp6 and Trf4, directly and competitively interact with the Nrd1 CID and differentially regulate the association of Nrd1 with two catalytic subunits of the exosome. Importantly, Mpp6 promotes the processing of Nrd1-terminated transcripts preferentially by Dis3, whereas Trf4 leads to Rrp6-dependent processing. This suggests that Mpp6 and Trf4 may play a role in choosing a particular RNA processing route for Nrd1-terminated transcripts within the exosome by guiding the transcripts to the appropriate exonuclease.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Exonucleasas/metabolismo , ARN de Hongos/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Exosomas/genética , Exosomas/metabolismo , Regulación Fúngica de la Expresión Génica , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Transcripción Genética
12.
Biochem Biophys Res Commun ; 483(1): 332-338, 2017 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28017722

RESUMEN

S100A5 is a calcium-binding protein of S100 family, which represents a major ligand to the receptor for advanced glycation end product (RAGE), a pattern recognition receptor engaged in diverse pathological processes. Here we have characterized calcium binding of S100A5 and the complex formation between S100A5 and RAGE using calorimetry and NMR spectroscopy. S100A5 binds to calcium ions in a sequential manner with the equilibrium dissociation constants (KD) of 1.3 µM and 3.5 µM, which corresponds to the calcium-binding at the C-terminal and N-terminal EF-hands. Upon calcium binding, S100A5 interacts with the V domain of RAGE (RAGE-v) to form a heterotrimer (KD ∼5.9 µM) that is distinct among the S100 family proteins. Chemical shift perturbation data from NMR titration experiments indicates that S100A5 employs the periphery of the dimer interface to interact with RAGE-v. Distinct binding mode and stoichiometry of RAGE against different S100 family proteins could be important to modulate diverse RAGE signaling.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Calcio/química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas S100/metabolismo , Calorimetría , Cromatografía , Motivos EF Hand , Escherichia coli/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estructura Terciaria de Proteína , Transducción de Señal , Termodinámica
13.
Proc Natl Acad Sci U S A ; 111(52): 18613-8, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512488

RESUMEN

Auxin is the central hormone that regulates plant growth and organ development. Transcriptional regulation by auxin is mediated by the auxin response factor (ARF) and the repressor, AUX/IAA. Aux/IAA associates with ARF via domain III-IV for transcriptional repression that is reversed by auxin-induced Aux/IAA degradation. It has been known that Aux/IAA and ARF form homo- and hetero-oligomers for the transcriptional regulation, but what determines their association states is poorly understood. Here we report, to our knowledge, the first solution structure of domain III-IV of Aux/IAA17 (IAA17), and characterize molecular interactions underlying the homotypic and heterotypic oligomerization. The structure exhibits a compact ß-grasp fold with a highly dynamic insert helix that is unique in Aux/IAA family proteins. IAA17 associates to form a heterogeneous ensemble of front-to-back oligomers in a concentration-dependent manner. IAA17 and ARF5 associate to form homo- or hetero-oligomers using a common scaffold and binding interfaces, but their affinities vary significantly. The equilibrium dissociation constants (KD) for homo-oligomerization are 6.6 µM and 0.87 µM for IAA17 and ARF5, respectively, whereas hetero-oligomerization reveals a ∼ 10- to ∼ 100-fold greater affinity (KD = 73 nM). Thus, individual homo-oligomers of IAA17 and ARF5 spontaneously exchange their subunits to form alternating hetero-oligomers for transcriptional repression. Oligomerization is mainly driven by electrostatic interactions, so that charge complementarity at the interface determines the binding affinity. Variable binding affinity by surface charge modulation may effectively regulate the complex interaction network between Aux/IAA and ARF family proteins required for the transcriptional control of auxin-response genes.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Unión al ADN/química , Proteínas Nucleares/química , Pliegue de Proteína , Multimerización de Proteína , Factores de Transcripción/química , Transcripción Genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Electricidad Estática , Relación Estructura-Actividad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
J Biol Chem ; 289(3): 1723-31, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24247248

RESUMEN

Cisplatin (CDDP) and its derivatives are considered first-line treatments for ovarian cancer (OVCA). However, despite initial results that often appear promising, in most cases patients will return with recurrent disease that fails to respond to further chemotherapy. We assayed a number of food phytochemicals with reported PI3K inhibitory ability to identify candidates that can influence CDDP treatment outcomes in chemoresistant OVCA cell lines. A direct comparison revealed that the diarylheptanoid hirsutenone from the tree bark of Alnus hirsuta var. sibirica was superior at inducing CDDP sensitivity in a number of chemoresistant cancer cell lines. Whereas hirsutenone treatment activated p53, its modest efficacy in p53-mutant and -null cell lines suggested the existence of a p53-independent mode of action. Further investigation revealed that hirsutenone causes CDDP-dependent apoptosis in chemoresistant cells by ubiquitin-proteasome-dependent X-linked inhibitor of apoptosis degradation and by enhancing the translocation of apoptosis-inducing factor from the mitochondria to the nucleus. This was found to be, at least in part, under the influence of upstream Akt activity, linking hirsutenone-dependent PI3K inhibition with downstream effects on apoptosis-inducing factor, X-linked inhibitor of apoptosis, and apoptosis. Our findings provide rationale for further investigation of the effects of hirsutenone on chemoresistant OVCA in clinical studies.


Asunto(s)
Antineoplásicos/farmacología , Factor Inductor de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Catecoles/farmacología , Núcleo Celular/metabolismo , Cisplatino/farmacología , Diarilheptanoides/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Alnus/química , Apoptosis/genética , Factor Inductor de la Apoptosis/genética , Catecoles/química , Línea Celular Tumoral , Núcleo Celular/genética , Diarilheptanoides/química , Resistencia a Antineoplásicos , Femenino , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/genética
16.
J Biol Chem ; 288(33): 23740-50, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23833193

RESUMEN

Resistance to cisplatin (CDDP) in ovarian cancer (OVCA) arises from the dysregulation of tumor suppressors and survival signals. During genotoxic challenge, these factors can be influenced by secondary agents that facilitate the induction of apoptosis. Piceatannol is a natural metabolite of the stilbene resveratrol found in grapes and is converted from its parent compound by the enzyme CYP1BA1 p450. It has been hypothesized to exert specific effects against various cellular targets; however, its ability to influence CDDP resistance in cancer cells has not been investigated to date. Here, we show that piceatannol is a potent enhancer of CDDP sensitivity in OVCA, and this effect is achieved through the modulation of several major determinants of chemoresistance. Piceatannol enhances p53-mediated expression of the pro-apoptotic protein NOXA, increases XIAP degradation via the ubiquitin-proteasome pathway, and enhances caspase-3 activation. This response is associated with an increase in Drp1-dependent mitochondrial fission, leading to more effective induction of apoptosis. In vivo studies using a mouse model of OVCA reveal that a number of these changes occur in association with a greater overall reduction in tumor weight when mice are treated with both piceatannol and CDDP, in comparison to treatment with either agent alone. Taken together, these findings demonstrate the potential application of piceatannol to enhance CDDP sensitivity in OVCA, and it acts on p53, XIAP, and mitochondrial fission.


Asunto(s)
Cisplatino/uso terapéutico , Dinámicas Mitocondriales , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Estilbenos/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Dinaminas/metabolismo , Femenino , Humanos , Ratones , Dinámicas Mitocondriales/efectos de los fármacos , Modelos Biológicos , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/efectos de los fármacos , Estilbenos/farmacología , Ubiquitinación/efectos de los fármacos
17.
Nature ; 455(7213): 693-6, 2008 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-18833280

RESUMEN

HIV-1 protease processes the Gag and Gag-Pol polyproteins into mature structural and functional proteins, including itself, and is therefore indispensable for viral maturation. The mature protease is active only as a dimer with each subunit contributing catalytic residues. The full-length transframe region protease precursor appears to be monomeric yet undergoes maturation via intramolecular cleavage of a putative precursor dimer, concomitant with the appearance of mature-like catalytic activity. How such intramolecular cleavage can occur when the amino and carboxy termini of the mature protease are part of an intersubunit beta-sheet located distal from the active site is unclear. Here we visualize the early events in N-terminal autoprocessing using an inactive mini-precursor with a four-residue N-terminal extension that mimics the transframe region protease precursor. Using paramagnetic relaxation enhancement, a technique that is exquisitely sensitive to the presence of minor species, we show that the mini-precursor forms highly transient, lowly populated (3-5%) dimeric encounter complexes that involve the mature dimer interface but occupy a wide range of subunit orientations relative to the mature dimer. Furthermore, the occupancy of the mature dimer configuration constitutes a very small fraction of the self-associated species (accounting for the very low enzymatic activity of the protease precursor), and the N-terminal extension makes transient intra- and intersubunit contacts with the substrate binding site and is therefore available for autocleavage when the correct dimer orientation is sampled within the encounter complex ensemble.


Asunto(s)
Proteasa del VIH/química , Proteasa del VIH/metabolismo , VIH-1/enzimología , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Dimerización , Proteasa del VIH/genética , VIH-1/genética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Precursores de Proteínas/genética , Estructura Terciaria de Proteína , Marcadores de Spin , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
18.
Angew Chem Int Ed Engl ; 53(37): 9784-7, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-24985319

RESUMEN

Aptides, a novel class of high-affinity peptides, recognize diverse molecular targets with high affinity and specificity. The solution structure of the aptide APT specifically bound to fibronectin extradomain B (EDB), which represents an unusual protein-protein interaction that involves coupled unfolding and binding, is reported. APT binding is accompanied by unfolding of the C-terminal ß strand of EDB, thereby permitting APT to interact with the freshly exposed hydrophobic interior surfaces of EDB. The ß-hairpin scaffold of APT drives the interaction by a ß-strand displacement mechanism, such that an intramolecular ß sheet is replaced by an intermolecular ß sheet. The unfolding of EDB perturbs the tight domain association between EDB and FN8 of fibronectin, thus highlighting its potential use as a scaffold that switches between stretched and bent conformations.


Asunto(s)
Fibronectinas/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Desplegamiento Proteico
19.
FEBS J ; 291(9): 1992-2008, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38362806

RESUMEN

The nucleoside inosine is a main intermediate of purine nucleotide catabolism in Saccharomyces cerevisiae and is produced via the dephosphorylation of inosine monophosphate (IMP) by IMP-specific 5'-nucleotidase 1 (ISN1), which is present in many eukaryotic organisms. Upon transition of yeast from oxidative to fermentative growth, ISN1 is important for intermediate inosine accumulation as purine storage, but details of ISN1 regulation are unknown. We characterized structural and kinetic behavior of ISN1 from S. cerevisiae (ScISN1) and showed that tetrameric ScISN1 is negatively regulated by inosine and adenosine triphosphate (ATP). Regulation involves an inosine-binding allosteric site along with IMP-induced local and global conformational changes in the monomer and a tetrameric re-arrangement, respectively. A proposed interaction network propagates local conformational changes in the active site to the intersubunit interface, modulating the allosteric features of ScISN1. Via ATP and inosine, ScISN1 activity is likely fine-tuned to regulate IMP and inosine homeostasis. These regulatory and catalytic features of ScISN1 contrast with those of the structurally homologous ISN1 from Plasmodium falciparum, indicating that ISN1 enzymes may serve different biological purposes in different organisms.


Asunto(s)
Adenosina Trifosfato , Sitio Alostérico , Inosina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Inosina/metabolismo , Cinética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Dominio Catalítico , Regulación Alostérica , Cristalografía por Rayos X , Inosina Monofosfato/metabolismo , Modelos Moleculares , Conformación Proteica , Unión Proteica
20.
Proc Natl Acad Sci U S A ; 107(4): 1379-84, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-20080627

RESUMEN

Protein-protein association generally proceeds via the intermediary of a transient, lowly populated, encounter complex ensemble. The mechanism whereby the interacting molecules in this ensemble locate their final stereospecific structure is poorly understood. Further, a fundamental question is whether the encounter complex ensemble is an effectively homogeneous population of nonspecific complexes or whether it comprises a set of distinct structural and thermodynamic states. Here we use intermolecular paramagnetic relaxation enhancement (PRE), a technique that is exquisitely sensitive to lowly populated states in the fast exchange regime, to characterize the mechanistic details of the transient encounter complex interactions between the N-terminal domain of Enzyme I (EIN) and the histidine-containing phosphocarrier protein (HPr), two major bacterial signaling proteins. Experiments were conducted at an ionic strength of 150 mM NaCl to eliminate any spurious nonspecific associations not relevant under physiological conditions. By monitoring the dependence of the intermolecular transverse PRE (Gamma(2)) rates measured on (15)N-labeled EIN on the concentration of paramagnetically labeled HPr, two distinct types of encounter complex configurations along the association pathway are identified and dissected. The first class, which is in equilibrium with and sterically occluded by the specific complex, probably involves rigid body rotations and small translations near or at the active site. In contrast, the second class of encounter complex configurations can coexist with the specific complex to form a ternary complex ensemble, which may help EIN compete with other HPr binding partners in vivo by increasing the effective local concentration of HPr even when the active site of EIN is occupied.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/química , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/metabolismo , Dominio Catalítico , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA