Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33397809

RESUMEN

Exon splicing triggered by unpredicted genetic mutation can cause translational variations in neurodegenerative disorders. In this study, we discover Alzheimer's disease (AD)-specific single-nucleotide variants (SNVs) and abnormal exon splicing of phospholipase c gamma-1 (PLCγ1) gene, using genome-wide association study (GWAS) and a deep learning-based exon splicing prediction tool. GWAS revealed that the identified single-nucleotide variations were mainly distributed in the H3K27ac-enriched region of PLCγ1 gene body during brain development in an AD mouse model. A deep learning analysis, trained with human genome sequences, predicted 14 splicing sites in human PLCγ1 gene, and one of these completely matched with an SNV in exon 27 of PLCγ1 gene in an AD mouse model. In particular, the SNV in exon 27 of PLCγ1 gene is associated with abnormal splicing during messenger RNA maturation. Taken together, our findings suggest that this approach, which combines in silico and deep learning-based analyses, has potential for identifying the clinical utility of critical SNVs in AD prediction.


Asunto(s)
Enfermedad de Alzheimer/genética , Aprendizaje Profundo , Predisposición Genética a la Enfermedad , Fosfolipasa C gamma/genética , Enfermedad de Alzheimer/patología , Animales , Simulación por Computador , Modelos Animales de Enfermedad , Exones/genética , Genoma Humano , Estudio de Asociación del Genoma Completo , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Polimorfismo de Nucleótido Simple/genética , Empalme del ARN/genética , ARN Mensajero/genética
2.
Cell Mol Life Sci ; 79(4): 195, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35303162

RESUMEN

Glioblastoma represents the most lethal brain tumor in adults. Several studies have shown the key role of phospholipase C ß1 (PLCß1) in the regulation of many mechanisms within the central nervous system suggesting PLCß1 as a novel signature gene in the molecular classification of high-grade gliomas. This study aims to determine the pathological impact of PLCß1 in glioblastoma, confirming that PLCß1 gene expression correlates with glioma's grade, and it is lower in 50 glioblastoma samples compared to 20 healthy individuals. PLCß1 silencing in cell lines and primary astrocytes, leads to increased cell migration and invasion, with the increment of mesenchymal transcription factors and markers, as Slug and N-Cadherin and metalloproteinases. Cell proliferation, through increased Ki-67 expression, and the main survival pathways, as ß-catenin, ERK1/2 and Stat3 pathways, are also affected by PLCß1 silencing. These data suggest a potential role of PLCß1 in maintaining a normal or less aggressive glioma phenotype.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proliferación Celular/genética , Glioblastoma/patología , Glioma/patología , Humanos , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo
3.
Cell Mol Life Sci ; 78(6): 2781-2795, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33034697

RESUMEN

Autosomal-dominant leukodystrophy (ADLD) is a rare fatal neurodegenerative disorder with overexpression of the nuclear lamina component, Lamin B1 due to LMNB1 gene duplication or deletions upstream of the gene. The molecular mechanisms responsible for driving the onset and development of this pathology are not clear yet. Vacuolar demyelination seems to be one of the most significant histopathological observations of ADLD. Considering the role of oligodendrocytes, astrocytes, and leukemia inhibitory factor (LIF)-activated signaling pathways in the myelination processes, this work aims to analyze the specific alterations in different cell populations from patients with LMNB1 duplications and engineered cellular models overexpressing Lamin B1 protein. Our results point out, for the first time, that astrocytes may be pivotal in the evolution of the disease. Indeed, cells from ADLD patients and astrocytes overexpressing LMNB1 show severe ultrastructural nuclear alterations, not present in oligodendrocytes overexpressing LMNB1. Moreover, the accumulation of Lamin B1 in astrocytes induces a reduction in LIF and in LIF-Receptor (LIF-R) levels with a consequential decrease in LIF secretion. Therefore, in both our cellular models, Jak/Stat3 and PI3K/Akt axes, downstream of LIF/LIF-R, are downregulated. Significantly, the administration of exogenous LIF can partially reverse the toxic effects induced by Lamin B1 accumulation with differences between astrocytes and oligodendrocytes, highlighting that LMNB1 overexpression drastically affects astrocytic function reducing their fundamental support to oligodendrocytes in the myelination process. In addition, inflammation has also been investigated, showing an increased activation in ADLD patients' cells.


Asunto(s)
Astrocitos/metabolismo , Enfermedades Desmielinizantes/patología , Lamina Tipo B/metabolismo , Transducción de Señal , Astrocitos/citología , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Células Cultivadas , Enfermedades Desmielinizantes/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Mediadores de Inflamación/metabolismo , Lamina Tipo B/genética , Factor Inhibidor de Leucemia/metabolismo , Factor Inhibidor de Leucemia/farmacología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Receptores OSM-LIF/metabolismo , Regulación hacia Arriba/efectos de los fármacos
4.
Genes Dev ; 28(21): 2361-9, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25316675

RESUMEN

Phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) at Ser273 by cyclin-dependent kinase 5 (CDK5) in adipose tissue stimulates insulin resistance, but the underlying molecular mechanisms are unclear. We show here that Thrap3 (thyroid hormone receptor-associated protein 3) can directly interact with PPARγ when it is phosphorylated at Ser273, and this interaction controls the diabetic gene programming mediated by the phosphorylation of PPARγ. Knockdown of Thrap3 restores most of the genes dysregulated by CDK5 action on PPARγ in cultured adipocytes. Importantly, reduced expression of Thrap3 in fat tissue by antisense oligonucleotides (ASOs) regulates a specific set of genes, including the key adipokines adiponectin and adipsin, and effectively improves hyperglycemia and insulin resistance in high-fat-fed mice without affecting body weight. These data indicate that Thrap3 plays a crucial role in controlling diabetic gene programming and may provide opportunities for the development of new therapeutics for obesity and type 2 diabetes.


Asunto(s)
Proteínas de Unión al ADN/genética , Diabetes Mellitus Tipo 2/genética , PPAR gamma/metabolismo , Factores de Transcripción/genética , Células 3T3 , Adipoquinas/genética , Animales , Células Cultivadas , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Fosfoserina/metabolismo , Unión Proteica
5.
Biochem Biophys Res Commun ; 577: 103-109, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34509721

RESUMEN

As essential phospholipid signaling regulators, phospholipase C (PLC)s are activated by various extracellular ligands and mediate intracellular signal transduction. PLCγ1 is involved in regulating various cancer cell functions. However, the precise in vivo link between PLCγ1 and cancer behavior remains undefined. To investigate the role of PLCγ1 in colorectal carcinogenesis, we generated an intestinal tissue-specific Plcg1 knock out (KO) in adenomatous polyposis coli (Apc) Min/+ mice. Plcg1 deficiency in ApcMin/+ mice showed earlier death, with a higher colorectal tumor incidence in both number and size than in wild-type mice. Mechanistically, inhibition of PLCγ1 increased the levels of its substrate phosphoinositol 4,5-bisphosphate (PIP2) at the plasma membrane and promoted the activation of Wnt receptor low-density lipoprotein receptor-related protein 6 (LRP6) by glycogen synthase kinase 3ß (GSK3ß) to enhance ß-catenin signaling. Enhanced cell proliferation and Wnt/ß-catenin signaling were observed in colon tumors from Plcg1 KO mice. Furthermore, low PLCγ1 expression was associated with a poor prognosis of colon cancer patients. Collectively, we demonstrated the role of PLCγ1 in vivo as a tumor suppressor relationship between the regulation of the PIP2 level and Wnt/ß-catenin-dependent intestinal tumor formation.


Asunto(s)
Proliferación Celular/genética , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Fosfolipasa C gamma/genética , Vía de Señalización Wnt/genética , beta Catenina/genética , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Intestinos/enzimología , Intestinos/patología , Estimación de Kaplan-Meier , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasa C gamma/deficiencia , beta Catenina/metabolismo
6.
FASEB J ; 34(11): 15400-15416, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32959428

RESUMEN

MDS are characterized by anemia and transfusion requirements. Transfused patients frequently show iron overload that negatively affects hematopoiesis. Iron chelation therapy can be effective in these MDS cases, but the molecular consequences of this treatment need to be further investigated. That is why we studied the molecular features of iron effect and Deferasirox therapy on PI-PLCbeta1 inositide signaling, using hematopoietic cells and MDS samples. At baseline, MDS patients showing a positive response after iron chelation therapy displayed higher levels of PI-PLCbeta1/Cyclin D3/PKCalpha expression. During treatment, these responder patients, as well as hematopoietic cells treated with FeCl3 and Deferasirox, showed a specific reduction of PI-PLCbeta1/Cyclin D3/PKCalpha expression, indicating that this signaling pathway is targeted by Deferasirox. The treatment was also able to specifically decrease the production of ROS. This effect correlated with a reduction of IL-1A and IL-2, as well as Akt/mTOR phosphorylation. In contrast, cells exposed only to FeCl3 and cells from MDS patients refractory to Deferasirox showed a specific increase of ROS and PI-PLCbeta1/Cyclin D3/PKCalpha expression. All in all, our data show that PI-PLCbeta1 signaling is a target for iron-induced oxidative stress and suggest that baseline PI-PLCbeta1 quantification could predict iron chelation therapy response in MDS.


Asunto(s)
Ciclina D3/metabolismo , Sobrecarga de Hierro/complicaciones , Hierro/efectos adversos , Síndromes Mielodisplásicos/terapia , Estrés Oxidativo/efectos de los fármacos , Fosfolipasa C beta/metabolismo , Proteína Quinasa C-alfa/metabolismo , Anciano , Transfusión Sanguínea/estadística & datos numéricos , Ciclina D3/genética , Deferasirox/farmacología , Femenino , Regulación de la Expresión Génica , Humanos , Quelantes del Hierro/farmacología , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/patología , Fosfolipasa C beta/genética , Fosforilación , Proteína Quinasa C-alfa/genética , Transducción de Señal
7.
FASEB J ; 34(1): 1270-1287, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914593

RESUMEN

Dysregulation of the adipo-osteogenic differentiation balance of mesenchymal stem cells (MSCs), which are common progenitor cells of adipocytes and osteoblasts, has been associated with many pathophysiologic diseases, such as obesity, osteopenia, and osteoporosis. Growing evidence suggests that lipid metabolism is crucial for maintaining stem cell homeostasis and cell differentiation; however, the detailed underlying mechanisms are largely unknown. Here, we demonstrate that glucosylceramide (GlcCer) and its synthase, glucosylceramide synthase (GCS), are key determinants of MSC differentiation into adipocytes or osteoblasts. GCS expression was increased during adipogenesis and decreased during osteogenesis. Targeting GCS using RNA interference or a chemical inhibitor enhanced osteogenesis and inhibited adipogenesis by controlling the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ). Treatment with GlcCer sufficiently rescued adipogenesis and inhibited osteogenesis in GCS knockdown MSCs. Mechanistically, GlcCer interacted directly with PPARγ through A/B domain and synergistically enhanced rosiglitazone-induced PPARγ activation without changing PPARγ expression, thereby treatment with exogenous GlcCer increased adipogenesis and inhibited osteogenesis. Animal studies demonstrated that inhibiting GCS reduced adipocyte formation in white adipose tissues under normal chow diet and high-fat diet feeding and accelerated bone repair in a calvarial defect model. Taken together, our findings identify a novel lipid metabolic regulator for the control of MSC differentiation and may have important therapeutic implications.


Asunto(s)
Adipocitos/metabolismo , Diferenciación Celular , Glucosilceramidas/metabolismo , Glucosiltransferasas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , PPAR gamma/metabolismo , Animales , Glucosilceramidas/genética , Glucosiltransferasas/genética , Humanos , Ratones , PPAR gamma/genética
8.
Brain ; 143(12): 3699-3716, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33300544

RESUMEN

The dopamine system in the midbrain is essential for volitional movement, action selection, and reward-related learning. Despite its versatile roles, it contains only a small set of neurons in the brainstem. These dopamine neurons are especially susceptible to Parkinson's disease and prematurely degenerate in the course of disease progression, while the discovery of new therapeutic interventions has been disappointingly unsuccessful. Here, we show that O-GlcNAcylation, an essential post-translational modification in various types of cells, is critical for the physiological function and survival of dopamine neurons. Bidirectional modulation of O-GlcNAcylation importantly regulates dopamine neurons at the molecular, synaptic, cellular, and behavioural levels. Remarkably, genetic and pharmacological upregulation of O-GlcNAcylation mitigates neurodegeneration, synaptic impairments, and motor deficits in an animal model of Parkinson's disease. These findings provide insights into the functional importance of O-GlcNAcylation in the dopamine system, which may be utilized to protect dopamine neurons against Parkinson's disease pathology.


Asunto(s)
Acetilglucosamina/metabolismo , Neuronas Dopaminérgicas/patología , Enfermedad de Parkinson/patología , Animales , Conducta Animal , Supervivencia Celular , Fenómenos Electrofisiológicos , Femenino , Inmunohistoquímica , Masculino , Ratones , Trastornos del Movimiento/etiología , Trastornos del Movimiento/prevención & control , Enfermedades Neurodegenerativas/prevención & control , Optogenética , Enfermedad de Parkinson/psicología , Modificación Traduccional de las Proteínas , Sinapsis/patología , Regulación hacia Arriba/efectos de los fármacos
9.
Adv Exp Med Biol ; 1187: 23-52, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33983572

RESUMEN

Breast cancer progression results from subversion of multiple intra- or intercellular signaling pathways in normal mammary tissues and their microenvironment, which have an impact on cell differentiation, proliferation, migration, and angiogenesis. Phospholipases (PLC, PLD and PLA) are essential mediators of intra- and intercellular signaling. They hydrolyze phospholipids, which are major components of cell membrane that can generate many bioactive lipid mediators, such as diacylglycerol, phosphatidic acid, lysophosphatidic acid, and arachidonic acid. Enzymatic processing of phospholipids by phospholipases converts these molecules into lipid mediators that regulate multiple cellular processes, which in turn can promote breast cancer progression. Thus, dysregulation of phospholipases contributes to a number of human diseases, including cancer. This review describes how phospholipases regulate multiple cancer-associated cellular processes, and the interplay among different phospholipases in breast cancer. A thorough understanding of the breast cancer-associated signaling networks of phospholipases is necessary to determine whether these enzymes are potential targets for innovative therapeutic strategies.


Asunto(s)
Neoplasias de la Mama , Fosfolipasa D , Humanos , Fosfolipasa D/metabolismo , Fosfolipasas , Fosfolípidos , Transducción de Señal , Microambiente Tumoral , Fosfolipasas de Tipo C/metabolismo
10.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808762

RESUMEN

Epilepsy is characterized by recurrent seizures due to abnormal hyperexcitation of neurons. Recent studies have suggested that the imbalance of excitation and inhibition (E/I) in the central nervous system is closely implicated in the etiology of epilepsy. In the brain, GABA is a major inhibitory neurotransmitter and plays a pivotal role in maintaining E/I balance. As such, altered GABAergic inhibition can lead to severe E/I imbalance, consequently resulting in excessive and hypersynchronous neuronal activity as in epilepsy. Phospholipase C (PLC) is a key enzyme in the intracellular signaling pathway and regulates various neuronal functions including neuronal development, synaptic transmission, and plasticity in the brain. Accumulating evidence suggests that neuronal PLC is critically involved in multiple aspects of GABAergic functions. Therefore, a better understanding of mechanisms by which neuronal PLC regulates GABAergic inhibition is necessary for revealing an unrecognized linkage between PLC and epilepsy and developing more effective treatments for epilepsy. Here we review the function of PLC in GABAergic inhibition in the brain and discuss a pathophysiological relationship between PLC and epilepsy.


Asunto(s)
Epilepsia/etiología , Epilepsia/metabolismo , Receptores de GABA/metabolismo , Fosfolipasas de Tipo C/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Biomarcadores , Susceptibilidad a Enfermedades , Epilepsia/diagnóstico , Epilepsia/tratamiento farmacológico , Antagonistas del GABA/farmacología , Antagonistas del GABA/uso terapéutico , Humanos , Isoenzimas , Transducción de Señal/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica
11.
FASEB J ; 33(10): 10668-10679, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31268747

RESUMEN

PLC-ß exerts biologic influences through GPCR. GPCRs are involved in regulating glucose-stimulated insulin secretion (GSIS). Previous studies have suggested that PLC-ßs might play an important role in pancreatic ß cells. However, because of a lack of the specific inhibitors of PLC-ß isozymes and appropriate genetic models, the in vivo function of specific PLC-ß isozymes in pancreatic ß cells and their physiologic relevance in the regulation of insulin secretion have not been studied so far. The present study showed that PLC-ß1 was crucial for ß-cell function by generation of each PLC-ß conditional knockout mouse. Mice lacking PLC-ß1 in ß cells exhibited a marked defect in GSIS, leading to glucose intolerance. In ex vivo studies, the secreted insulin level and Ca2+ response in Plcb1f/f; pancreas/duodenum homeobox protein 1 (Pdx1)-Cre recombinase-estrogen receptor T2 (CreERt2) islets was lower than those in the Plcb1f/f islets under the high-glucose condition. PLC-ß1 led to potentiate insulin secretion via stimulation of particular Gq-protein-coupled receptors. Plcb1f/f; Pdx1-CreERt2 mice fed a high-fat diet developed more severe glucose intolerance because of a defect in insulin secretion. The present study identified PLC-ß1 as an important molecule that regulates ß cell insulin secretion and can be considered a candidate for therapeutic intervention in diabetes mellitus.-Hwang, H.-J., Yang, Y. R., Kim, H. Y., Choi, Y., Park, K.-S., Lee, H., Ma, J. S., Yamamoto, M., Kim, J., Chae, Y. C., Choi, J. H., Cocco, L., Berggren, P.-O., Jang, H.-J., Suh, P.-G. Phospholipase Cß1 potentiates glucose-stimulated insulin secretion.


Asunto(s)
Glucosa/metabolismo , Secreción de Insulina/fisiología , Fosfolipasa C beta/metabolismo , Animales , Línea Celular , Dieta Alta en Grasa/efectos adversos , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Técnicas In Vitro , Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Isoenzimas/deficiencia , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolipasa C beta/deficiencia , Fosfolipasa C beta/genética , Receptores Acoplados a Proteínas G/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
12.
EMBO Rep ; 19(11)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30224412

RESUMEN

Coordinated expression of guidance molecules and their signal transduction are critical for correct brain wiring. Previous studies have shown that phospholipase C gamma1 (PLCγ1), a signal transducer of receptor tyrosine kinases, plays a specific role in the regulation of neuronal cell morphology and motility in vitro However, several questions remain regarding the extracellular stimulus that triggers PLCγ1 signaling and the exact role PLCγ1 plays in nervous system development. Here, we demonstrate that PLCγ1 mediates axonal guidance through a netrin-1/deleted in colorectal cancer (DCC) complex. Netrin-1/DCC activates PLCγ1 through Src kinase to induce actin cytoskeleton rearrangement. Neuronal progenitor-specific knockout of Plcg1 in mice causes axon guidance defects in the dorsal part of the mesencephalon during embryogenesis. Adult Plcg1-deficient mice exhibit structural alterations in the corpus callosum, substantia innominata, and olfactory tubercle. These results suggest that PLCγ1 plays an important role in the correct development of white matter structure by mediating netrin-1/DCC signaling.


Asunto(s)
Axones/fisiología , Encéfalo/embriología , Netrina-1/metabolismo , Fosfolipasa C gamma/metabolismo , Animales , Axones/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Receptor DCC/metabolismo , Femenino , Masculino , Mesencéfalo/embriología , Ratones Endogámicos C57BL , Ratones Transgénicos , Netrina-1/genética , Fosfolipasa C gamma/genética , Fosforilación , Embarazo , Familia-src Quinasas/metabolismo
13.
Handb Exp Pharmacol ; 259: 291-308, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31889219

RESUMEN

Nuclear inositides have a specific subcellular distribution that is linked to specific functions; thus their regulation is fundamental both in health and disease. Emerging evidence shows that alterations in multiple inositide signalling pathways are involved in pathophysiology, not only in cancer but also in other diseases. Here, we give an overview of the main features of inositides in the cell, and we discuss their potential as new molecular therapeutic targets.


Asunto(s)
Núcleo Celular , Fosfatidilinositoles/fisiología , Transducción de Señal , Humanos
14.
J Lipid Res ; 60(2): 312-317, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30287524

RESUMEN

Phosphoinositide-specific phospholipases C (PI-PLCs) are involved in signaling pathways related to critical cellular functions, such as cell cycle regulation, cell differentiation, and gene expression. Nuclear PI-PLCs have been studied as key enzymes, molecular targets, and clinical prognostic/diagnostic factors in many physiopathologic processes. Here, we summarize the main studies about nuclear PI-PLCs, specifically, the imbalance of isozymes such as PI-PLCß1 and PI-PLCζ, in cerebral, hematologic, neuromuscular, and fertility disorders. PI-PLCß1 and PI-PLCÉ£1 affect epilepsy, depression, and bipolar disorder. In the brain, PI-PLCß1 is involved in endocannabinoid neuronal excitability and is a potentially novel signature gene for subtypes of high-grade glioma. An altered quality or quantity of PI-PLCζ contributes to sperm defects that result in infertility, and PI-PLCß1 aberrant inositide signaling contributes to both hematologic and degenerative muscle diseases. Understanding the mechanisms behind PI-PLC involvement in human pathologies may help identify new strategies for personalized therapies of these conditions.


Asunto(s)
Encefalopatías/enzimología , Núcleo Celular/enzimología , Enfermedades Hematológicas/enzimología , Infertilidad/enzimología , Enfermedades Neuromusculares/enzimología , Fosfolipasas de Tipo C/metabolismo , Animales , Encefalopatías/patología , Enfermedades Hematológicas/patología , Humanos , Infertilidad/patología , Isoenzimas/metabolismo , Enfermedades Neuromusculares/patología
15.
Exp Dermatol ; 28(9): 1051-1057, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31338881

RESUMEN

Differentiation and proliferation of keratinocyte are controlled by various signalling pathways. The epidermal growth factor receptor (EGFR) is known to be an important regulator of multiple epidermal functions. Inhibition of EGFR signalling disturbs keratinocyte proliferation, differentiation and migration. Previous studies have revealed that one of the EGFR downstream signalling molecules, phospholipase Cγ1 (PLCγ1), regulates differentiation, proliferation and migration of keratinocytes in in vitro cell culture system. However, the role of PLCγ1 in the regulation of keratinocyte functions in animal epidermis remains unexplored. In this study, we generated keratinocyte-specific PLCγ1 knockout (KO) mice (PLCγ1 cKO mice). Contrary to our expectations, loss of PLCγ1 did not affect differentiation, proliferation and migration of interfollicular keratinocytes. We further examined the role of PLCγ1 in irritant contact dermatitis (ICD), in which epidermal cells play a pivotal role. Upon irritant stimulation, PLCγ1 cKO mice showed exaggerated ICD responses. Further study revealed that epidermal loss of PLCγ1 induced sebaceous gland hyperplasia, indicating that PLCγ1 regulates homeostasis of one of the epidermal appendages. Taken together, our results indicate that, although PLCγ1 is dispensable in interfollicular keratinocyte for normal differentiation, proliferation and migration, it is required for normal ICD responses. Our results also indicate that PLCγ1 regulates homeostasis of sebaceous glands.


Asunto(s)
Dermatitis Irritante/enzimología , Queratinocitos/enzimología , Fosfolipasa C gamma/fisiología , Glándulas Sebáceas/enzimología , Animales , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Aceite de Crotón/toxicidad , Dermatitis Irritante/etiología , Epidermis/efectos de los fármacos , Epidermis/enzimología , Epidermis/patología , Homeostasis , Hiperplasia , Irritantes , Queratinocitos/efectos de los fármacos , Ratones , Ratones Noqueados , Ratones Transgénicos , Fosfolipasa C gamma/deficiencia , Fosfolipasa C gamma/genética , Glándulas Sebáceas/efectos de los fármacos , Glándulas Sebáceas/patología
16.
FASEB J ; 32(2): 681-692, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28970249

RESUMEN

PI-PLCß1 is involved in cell proliferation, differentiation, and myelodysplastic syndrome (MDS) pathogenesis. Moreover, the increased activity of PI-PLCß1 reduces the expression of PKC-α, which, in turn, delays the cell proliferation and is linked to erythropoiesis. Lenalidomide is currently used in low-risk patients with MDS and del(5q), where it can suppress the del(5q) clone and restore normal erythropoiesis. In this study, we analyzed the effect of lenalidomide on 16 patients with low-risk del(5q) MDS, as well as del(5q) and non-del(5q) hematopoietic cell lines, mainly focusing on erythropoiesis, cell cycle, and PI-PLCß1/PKC-α signaling. Overall, 11 patients were evaluated clinically, and 10 (90%) had favorable responses; the remaining case had a stable disease. At a molecular level, both responder patients and del(5q) cells showed a specific induction of erythropoiesis, with a reduced γ/ß-globin ratio, an increase in glycophorin A, and a nuclear translocation of PKC-α. Moreover, lenalidomide could induce a selective G0/G1 arrest of the cell cycle in del(5q) cells, slowing down the rate proliferation in those cells. Altogether, our results could not only better explain the role of PI-PLCß1/PKC-α signaling in erythropoiesis but also lead to a better comprehension of the lenalidomide effect on del(5q) MDS and pave the way to innovative, targeted therapies.-Poli, A., Ratti, S., Finelli, C., Mongiorgi, S., Clissa, C., Lonetti, A., Cappellini, A., Catozzi, A., Barraco, M., Suh, P.-G., Manzoli, L., McCubrey, J. A., Cocco, L., Follo, M. Y. Nuclear translocation of PKC-α is associated with cell cycle arrest and erythroid differentiation in myelodysplastic syndromes (MDSs).


Asunto(s)
Diferenciación Celular , Núcleo Celular/enzimología , Células Eritroides/enzimología , Eritropoyesis , Puntos de Control de la Fase G1 del Ciclo Celular , Síndromes Mielodisplásicos/enzimología , Proteína Quinasa C-alfa/metabolismo , Transducción de Señal , Transporte Activo de Núcleo Celular , Anciano , Anciano de 80 o más Años , Línea Celular , Núcleo Celular/genética , Núcleo Celular/patología , Células Eritroides/patología , Femenino , Humanos , Masculino , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Proteína Quinasa C-alfa/genética , Fase de Descanso del Ciclo Celular
17.
J Cell Physiol ; 233(11): 8701-8710, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29797580

RESUMEN

The zafirlukast has been reported to be anti-inflammatory and widely used to alleviate the symptoms of asthma. However, its influence on insulin secretion in pancreatic ß-cells has not been investigated. Herein, we examined the effects of zafirlukast on insulin secretion and the potential underlying mechanisms. Among the cysteinyl leukotriene receptor 1 antagonists, zafirlukast, pranlukast, and montelukast, only zafirlukast enhanced insulin secretion in a concentration-dependent manner in both low and high glucose conditions and elevated the level of [Ca2+ ]i , further activating Ca2+ /calmodulin-dependent protein kinase II (CaMKII), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK) signaling. These effects were nearly abolished by the L-type Ca2+ channel antagonist nifedipine, while treatment with thapsigargin, a sarco/endoplasmic reticulum Ca2+ ATPase inhibitor, did not have the same effect, suggesting that zafirlukast primarily induces the entry of extracellular Ca2+ rather than intracellular Ca2+ from the endoplasmic reticulum. Zafirlukast treatment resulting in a significant drop in glucose levels and increased insulin secretion in C57BL/6J mice. These findings will contribute to an improved understanding of the side effects of zafirlukast and potential candidate for a therapeutic intervention in diabetes.


Asunto(s)
Canales de Calcio Tipo L/genética , Hipoglucemia/tratamiento farmacológico , Secreción de Insulina/genética , Compuestos de Tosilo/administración & dosificación , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/administración & dosificación , Canales de Calcio Tipo L/efectos de los fármacos , Señalización del Calcio/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/genética , Glucosa/genética , Glucosa/metabolismo , Humanos , Hipoglucemia/genética , Hipoglucemia/patología , Hipoglucemia/fisiopatología , Indoles , Insulina/genética , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Fenilcarbamatos , Sulfonamidas
18.
J Cell Physiol ; 232(9): 2550-2557, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27731506

RESUMEN

Phosphatidylinositol (PI) signaling is an essential regulator of cell motility and proliferation. A portion of PI metabolism and signaling takes place in the nuclear compartment of eukaryotic cells, where an array of kinases and phosphatases localize and modulate PI. Among these, Diacylglycerol Kinases (DGKs) are a class of phosphotransferases that phosphorylate diacylglycerol and induce the synthesis of phosphatidic acid. Nuclear DGKalpha modulates cell cycle progression, and its activity or expression can lead to changes in the phosphorylated status of the Retinoblastoma protein, thus, impairing G1/S transition and, subsequently, inducing cell cycle arrest, which is often uncoupled with apoptosis or autophagy induction. Here we report for the first time not only that the DGKalpha isoform is highly expressed in the nuclei of human erythroleukemia cell line K562, but also that its nuclear activity drives K562 cells through the G1/S transition during cell cycle progression. J. Cell. Physiol. 232: 2550-2557, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Núcleo Celular/enzimología , Proliferación Celular , Diacilglicerol Quinasa/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular , Leucemia Eritroblástica Aguda/enzimología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/patología , Proliferación Celular/efectos de los fármacos , Diacilglicerol Quinasa/antagonistas & inhibidores , Diacilglicerol Quinasa/genética , Relación Dosis-Respuesta a Droga , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Isoenzimas , Células K562 , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/patología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección
19.
J Cell Biochem ; 118(8): 1969-1978, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28106288

RESUMEN

The existence of an independent nuclear inositide pathway distinct from the cytoplasmic one has been demonstrated in different physiological systems and in diseases. In this prospect we analyze the role of PI-PLCß1 nuclear isoform in relation to the cell cycle regulation, the cell differentiation, and different physiopathological pathways focusing on the importance of the nuclear localization from both molecular and clinical point of view. PI-PLCß1 is essential for G1/S transition through DAG and Cyclin D3 and plays also a central role in G2/M progression through Cyclin B1 and PKCα. In the differentiation process of C2C12 cells PI-PLCß1 increases in both myogenic differentiation and osteogenic differentiation. PI-PLCß1 and Cyclin D3 reduction has been observed in Myotonic Dystrophy (DM) suggesting a pivotal role of these enzymes in DM physiopathology. PI-PLCß1 is also involved in adipogenesis through a double phase mechanism. Moreover, PI-PLCß1 plays a key role in the normal hematopoietic differentiation where it seems to decrease in erythroid differentiation and increase in myeloid differentiation. In Myelodysplastic Syndromes (MDS) PI-PLCß1 has a genetic and epigenetic relevance and it is related to MDS patients' risk of Acute Myeloid Leukemia (AML) evolution. In MDS patients PI-PLCß1 seems to be also a therapeutic predictive outcome marker. In the central nervous system, PI-PLCß1 seems to be involved in different pathways in both brain cortex development and synaptic plasticity related to different diseases. Another PI-PLC isozyme that could be related to nuclear activities is PI-PLCζ that is involved in infertility processes. J. Cell. Biochem. 118: 1969-1978, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Núcleo Celular/metabolismo , Fosfatos de Inositol/metabolismo , Síndromes Mielodisplásicos/genética , Células Mieloides/metabolismo , Fosfolipasa C beta/genética , Adipocitos/metabolismo , Adipocitos/patología , Animales , Encefalopatías/genética , Encefalopatías/metabolismo , Encefalopatías/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Infertilidad/genética , Infertilidad/metabolismo , Infertilidad/patología , Células Musculares/metabolismo , Células Musculares/patología , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/patología , Células Mieloides/patología , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Distrofia Miotónica/patología , Osteoblastos/metabolismo , Osteoblastos/patología , Fosfolipasa C beta/metabolismo , Transducción de Señal
20.
Mol Cell Proteomics ; 14(4): 882-92, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25616869

RESUMEN

Elevated levels of the free fatty acid palmitate are found in the plasma of obese patients and induce insulin resistance. Skeletal muscle secretes myokines as extracellular signaling mediators in response to pathophysiological conditions. Here, we identified and characterized the skeletal muscle secretome in response to palmitate-induced insulin resistance. Using a quantitative proteomic approach, we identified 36 secretory proteins modulated by palmitate-induced insulin resistance. Bioinformatics analysis revealed that palmitate-induced insulin resistance induced cellular stress and modulated secretory events. We found that the decrease in the level of annexin A1, a secretory protein, depended on palmitate, and that annexin A1 and its receptor, formyl peptide receptor 2 agonist, played a protective role in the palmitate-induced insulin resistance of L6 myotubes through PKC-θ modulation. In mice fed with a high-fat diet, treatment with the formyl peptide receptor 2 agonist improved systemic insulin sensitivity. Thus, we identified myokine candidates modulated by palmitate-induced insulin resistance and found that the annexin A1- formyl peptide receptor 2 pathway mediated the insulin resistance of skeletal muscle, as well as systemic insulin sensitivity.


Asunto(s)
Anexina A1/metabolismo , Resistencia a la Insulina , Fibras Musculares Esqueléticas/metabolismo , Palmitatos/farmacología , Proteómica/métodos , Receptores de Formil Péptido/agonistas , Animales , Anexina A1/agonistas , Línea Celular , Biología Computacional , Medios de Cultivo Condicionados/farmacología , Dieta Alta en Grasa , Insulina/farmacología , Masculino , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Oligopéptidos/farmacología , Ratas , Receptores de Formil Péptido/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA