Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Hum Mol Genet ; 30(21): 1955-1967, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34137825

RESUMEN

Accumulation of microtubule-associated tau protein is thought to cause neuron loss in a group of neurodegenerative diseases called tauopathies. In diseased brains, tau molecules adopt pathological structures that propagate into insoluble forms with disease-specific patterns. Several types of posttranslational modifications in tau are known to modulate its aggregation propensity in vitro, but their influence on tau accumulation and toxicity at the whole-organism level has not been fully elucidated. Herein, we utilized a series of transgenic Drosophila models to compare systematically the toxicity induced by five tau constructs with mutations or deletions associated with aggregation, including substitutions at seven disease-associated phosphorylation sites (S7A and S7E), deletions of PHF6 and PHF6* sequences (ΔPHF6 and ΔPHF6*), and substitutions of cysteine residues in the microtubule binding repeats (C291/322A). We found that substitutions and deletions resulted in different patterns of neurodegeneration and accumulation, with C291/322A having a dramatic effect on both tau accumulation and neurodegeneration. These cysteines formed disulfide bonds in mouse primary cultured neurons and in the fly retina, and stabilized tau proteins. Additionally, they contributed to tau accumulation under oxidative stress. We also found that each of these cysteine residues contributes to the microtubule polymerization rate and microtubule levels at equilibrium, but none of them affected tau binding to polymerized microtubules. Since tau proteins expressed in the Drosophila retina are mostly present in the early stages of tau filaments self-assembly, our results suggest that disulfide bond formation by these cysteine residues could be attractive therapeutic targets.


Asunto(s)
Agregación Patológica de Proteínas/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Animales , Animales Modificados Genéticamente , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Drosophila , Microtúbulos/metabolismo , Neuronas/metabolismo , Estrés Oxidativo , Unión Proteica , Multimerización de Proteína , Tauopatías/etiología , Tauopatías/patología , Proteínas tau/genética
2.
J Biol Chem ; 291(43): 22714-22720, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27601475

RESUMEN

Neurofibrillar tangles caused by intracellular hyperphosphorylated tau inclusion and extracellular amyloid ß peptide deposition are hallmarks of Alzheimer's disease. Tau contains one or two cysteine residues in three or four repeats of the microtubule binding region following alternative splicing of exon 10, and formation of intermolecular cysteine disulfide bonds accelerates tau aggregation. 8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) acts as a novel second messenger of nitric oxide (NO) by covalently binding cGMP to cysteine residues by electrophilic properties, a process termed protein S-guanylation. Here we studied S-guanylation of tau and its effects on tau aggregation. 8-Nitro-cGMP exposure induced S-guanylation of tau both in vitro and in tau-overexpressed HEK293T cells. S-guanylated tau inhibited heparin-induced tau aggregation in a thioflavin T assay. Atomic force microscopy observations indicated that S-guanylated tau could not form tau granules and fibrils. Further biochemical analyses showed that S-guanylated tau was inhibited at the step of tau oligomer formation. In P301L tau-expressing Neuro2A cells, 8-nitro-cGMP treatment significantly reduced the amount of sarcosyl-insoluble tau. NO-linked chemical modification on cysteine residues of tau could block tau aggregation, and therefore, increasing 8-nitro-cGMP levels in the brain could become a potential therapeutic strategy for Alzheimer's disease.


Asunto(s)
GMP Cíclico/análogos & derivados , Óxido Nítrico/metabolismo , Agregado de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , GMP Cíclico/química , GMP Cíclico/metabolismo , Células HEK293 , Humanos , Proteínas tau/química , Proteínas tau/genética
3.
Sci Rep ; 14(1): 21832, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294331

RESUMEN

Methylmercury (MeHg) is a well-known neurotoxicant that induces various cellular functions depending on cellular- and developmental-specific vulnerabilities. MeHg has a high affinity for selenol and thiol groups, thus impairing the antioxidant system. Such affinity characteristics of MeHg led us to develop sensor vectors to assess MeHg toxicity. In this study, MeHg-mediated defects in selenocysteine (Sec) incorporation were demonstrated using thioredoxin reductase 1 cDNA fused with the hemagglutinin tag sequence at the C-terminus. Taking advantage of such MeHg-mediated defects in Sec incorporation, a cDNA encoding luciferase with a Sec substituted for cysteine-491 was constructed. This construct showed MeHg-induced decreases in signaling in a dose-dependent manner. To directly detect truncated luciferase under MeHg exposure, we further constructed a new sensor vector fused with a target for proteasomal degradation. However, this construct was inadequate because of the low rate of Sec insertion, even in the absence of MeHg. Finally, a Krab transcriptional suppressor fused with Sec was constructed and assessed to demonstrate MeHg-dependent increases in signal intensity. We confirmed that the vector responded specifically and in a dose-dependent manner to MeHg in cultured cerebellar granule cells. This vector is expected to allow monitoring of MeHg-specific toxicity via spatial and temporal imaging.


Asunto(s)
Compuestos de Metilmercurio , Compuestos de Metilmercurio/toxicidad , Animales , Humanos , Ratones , Técnicas Biosensibles/métodos , Luciferasas/metabolismo , Luciferasas/genética , Cerebelo/metabolismo , Cerebelo/efectos de los fármacos
4.
Cell Rep ; 31(9): 107704, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32492420

RESUMEN

Fast purinergic signaling is mediated by ATP and ATP-gated ionotropic P2X receptors (P2XRs), and it is implicated in pain-related behaviors. The properties exhibited by P2XRs vary between those expressed in heterologous cells and in vivo. Several modulators of ligand-gated ion channels have recently been identified, suggesting that there are P2XR functional modulators in vivo. Here, we establish a genome-wide open reading frame (ORF) collection and perform functional screening to identify modulators of P2XR activity. We identify TMEM163, which specifically modulates the channel properties and pharmacology of P2XRs. We also find that TMEM163 is required for full function of the neuronal P2XR and a pain-related ATP-evoked behavior. These results establish TMEM163 as a critical modulator of P2XRs in vivo and a potential target for the discovery of drugs for treating pain.


Asunto(s)
Adenosina Trifosfato/farmacología , Conducta Animal/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Receptores Purinérgicos P2X/metabolismo , Animales , Calcio/metabolismo , Potenciales Evocados/efectos de los fármacos , Femenino , Genoma , Células HEK293 , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Sistemas de Lectura Abierta/genética , Dolor/patología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X3/deficiencia , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo
6.
J Biochem ; 137(2): 147-55, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15749829

RESUMEN

The processing of beta-amyloid precursor protein (APP) generates the amyloid beta-protein (A beta) and contributes to the development of Alzheimer's disease (AD). Elucidating the regulation of APP processing will, therefore, contribute to the understanding of AD. Many APP-binding proteins, such as FE65, X11s, and JNK-interacting proteins (JIPs), bind the motif 681-GYENPTY-687 within the cytoplasmic domain of APP. Here we found that the human homologue of yeast amino-terminal acetyltransferase ARD1 (hARD1) interacts with a novel motif, 658-HGVVEVD-664, in the cytoplasmic domain of APP695. hARD1 expressed its acetyltransferase activity in association with a human subunit homologous to another yeast amino-acetyltransferase, hNAT1. Co-expression of hARD1 and hNAT1 in cells suppressed A beta40 secretion and the suppression correlated with their enzyme activity. These observations suggest that the association of APP with hARD1 and hNAT1 and/or their N-acetyltransferase activity contributes to the regulation of A beta generation.


Asunto(s)
Acetiltransferasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Arilamina N-Acetiltransferasa/metabolismo , Acetiltransferasas/análisis , Acetiltransferasas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/análisis , Precursor de Proteína beta-Amiloide/química , Arilamina N-Acetiltransferasa/genética , Células Cultivadas , Citoplasma/química , Citoplasma/metabolismo , Humanos , Isoenzimas , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Técnicas del Sistema de Dos Híbridos
7.
Nat Commun ; 6: 10216, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26671725

RESUMEN

Neurofibrillary tangles, composed of hyperphosphorylated tau fibrils, are a pathological hallmark of Alzheimer's disease; the neurofibrillary tangle load correlates strongly with clinical progression of the disease. A growing body of evidence indicates that tau oligomer formation precedes the appearance of neurofibrillary tangles and contributes to neuronal loss. Here we show that tau oligomer formation can be inhibited by compounds whose chemical backbone includes 1,2-dihydroxybenzene. Specifically, we demonstrate that 1,2-dihydroxybenzene-containing compounds bind to and cap cysteine residues of tau and prevent its aggregation by hindering interactions between tau molecules. Further, we show that orally administered DL-isoproterenol, an adrenergic receptor agonist whose skeleton includes 1,2-dihydroxybenzene and which penetrates the brain, reduces the levels of detergent-insoluble tau, neuronal loss and reverses neurofibrillary tangle-associated brain dysfunction. Thus, compounds that target the cysteine residues of tau may prove useful in halting the progression of Alzheimer's disease and other tauopathies.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Enfermedad de Alzheimer/metabolismo , Catecoles/farmacología , Cisteína/efectos de los fármacos , Isoproterenol/farmacología , Ovillos Neurofibrilares/efectos de los fármacos , Neuronas/efectos de los fármacos , Proteínas tau/efectos de los fármacos , Agonistas Adrenérgicos beta/química , Animales , Conducta Animal/efectos de los fármacos , Western Blotting , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Catecoles/química , Catecoles/metabolismo , Línea Celular Tumoral , Cisteína/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos , Isoproterenol/química , Ratones , Ratones Transgénicos , Ovillos Neurofibrilares/metabolismo , Neuronas/patología , Polimerizacion , Proteínas tau/genética , Proteínas tau/metabolismo
8.
J Biochem ; 153(4): 331-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23426437

RESUMEN

Glutamate is a major excitatory neurotransmitter in the vertebrate brain. Among the ionotropic glutamate receptors, α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors are the major receptors mediating excitatory fast synaptic transmission. AMPA receptors are also responsible for modifying synaptic strength through the regulation of their numbers at synapses. Their high regulatability, therefore, could contribute to the mechanisms of synaptic plasticity. The mechanisms regulating AMPA receptor trafficking have evoked great interest through the decades. Recent studies show that in the brain, AMPA receptors make complexes with transmembrane AMPA regulatory proteins (TARPs), which serve as auxiliary subunits. TARPs are required for AMPA receptor function and trafficking. After the initial discovery of TARPs, several other AMPA receptor auxiliary subunits were identified: CNIH-2, CNIH-3, CKAMP44, SynDIG1, SOL-1, SOL-2 and GSG-1L. This review discusses progress in identifying the role of auxiliary subunits in AMPA receptor trafficking.


Asunto(s)
Transporte de Proteínas/fisiología , Receptores AMPA/fisiología , Animales , Encéfalo/metabolismo , Canales de Calcio/metabolismo , Homólogo 4 de la Proteína Discs Large , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Subunidades de Proteína/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo
10.
Nat Neurosci ; 14(11): 1410-2, 2011 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-22002768

RESUMEN

The reduction in synaptic transmission and plasticity in mice lacking the hippocampus-enriched AMPA receptor (AMPAR) auxiliary subunit TARPγ-8 could be a result of a reduction in AMPAR expression or of the direct action of γ-8. We generated TARPγ-8Δ4 knock-in mice lacking the C-terminal PDZ ligand. We found that synaptic transmission and AMPARs were reduced in the mutant mice, but extrasynaptic AMPAR expression and long-term potentiation (LTP) were unaltered. Our findings suggest that there are distinct TARP-dependent mechanisms for synaptic transmission and LTP.


Asunto(s)
Proteínas de la Membrana/metabolismo , Plasticidad Neuronal/fisiología , Dominios PDZ/fisiología , Transmisión Sináptica/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Biofisica , Canales de Calcio/genética , Homólogo 4 de la Proteína Discs Large , Estimulación Eléctrica , Regulación del Desarrollo de la Expresión Génica/genética , Guanilato-Quinasas/metabolismo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Modelos Biológicos , Mutación/genética , Plasticidad Neuronal/genética , Dominios PDZ/genética , Técnicas de Placa-Clamp , Transmisión Sináptica/genética , Sinaptofisina/metabolismo , Sinaptosomas/metabolismo
11.
PLoS One ; 6(7): e22108, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21818298

RESUMEN

BACKGROUND: Amyloid ß (Aß), a causative peptide of Alzheimer's disease, is generated by intracellular metabolism of amyloid ß-protein precursor (APP). In general, mature APP (mAPP, N- and O-glycosylated form) is subject to successive cleavages by α- or ß-, and γ-secretases in the late protein secretory pathway and/or at plasma membrane, while immature APP (imAPP, N-glycosylated form) locates in the early secretory pathway such as endoplasmic reticulum or cis-Golgi, in which imAPP is not subject to metabolic cleavages. X11-like (X11L) is a neural adaptor protein composed of a phosphotyrosine-binding (PTB) and two C-terminal PDZ domains. X11L suppresses amyloidogenic cleavage of mAPP by direct binding of X11L through its PTB domain, thereby generation of Aß lowers. X11L expresses another function in the regulation of intracellular APP trafficking. METHODOLOGY: In order to analyze novel function of X11L in intracellular trafficking of APP, we performed a functional dissection of X11L. Using cells expressing various domain-deleted X11L mutants, intracellular APP trafficking was examined along with analysis of APP metabolism including maturation (O-glycosylation), processing and localization of APP. CONCLUSIONS: X11L accumulates imAPP into the early secretory pathway by mediation of its C-terminal PDZ domains, without being bound to imAPP directly. With this novel function, X11L suppresses overall APP metabolism and results in further suppression of Aß generation. Interestingly some of the accumulated imAPP in the early secretory pathway are likely to appear on plasma membrane by unidentified mechanism. Trafficking of imAPP to plasma membrane is observed in other X11 family proteins, X11 and X11L2, but not in other APP-binding partners such as FE65 and JIP1. It is herein clear that respective functional domains of X11L regulate APP metabolism at multiple steps in intracellular protein secretory pathways.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Portadoras/metabolismo , Espacio Intracelular/metabolismo , Animales , Brefeldino A/farmacología , Proteínas Portadoras/química , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Espacio Intracelular/efectos de los fármacos , Ratones , Proteínas Mutantes/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Temperatura , Proteínas de Unión al GTP rab1/metabolismo
12.
Neuron ; 66(5): 755-67, 2010 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-20547132

RESUMEN

Neurons use neurotransmitters to communicate across synapses, constructing neural circuits in the brain. AMPA-type glutamate receptors are the predominant excitatory neurotransmitter receptors mediating fast synaptic transmission. AMPA receptors localize at synapses by forming protein complexes with transmembrane AMPA receptor regulatory proteins (TARPs) and PSD-95-like membrane-associated guanylate kinases. Among the three classes of ionotropic glutamate receptors (AMPA, NMDA, and kainate type), AMPA receptor activity is most regulatable by neuronal activity to adjust synaptic strength. Here, we mutated the prototypical TARP, stargazin, and found that TARP phosphorylation regulates synaptic AMPA receptor activity in vivo. We also found that stargazin interacts with negatively charged lipid bilayers in a phosphorylation-dependent manner and that the lipid interaction inhibited stargazin binding to PSD-95. Cationic lipids dissociated stargazin from lipid bilayers and enhanced synaptic AMPA receptor activity in a stargazin phosphorylation-dependent manner. Thus, TARP phosphorylation plays a critical role in regulating AMPA receptor-mediated synaptic transmission via a lipid bilayer interaction.


Asunto(s)
Canales de Calcio/metabolismo , Membrana Dobles de Lípidos/metabolismo , Receptores AMPA/metabolismo , Sinapsis/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Técnicas de Sustitución del Gen , Proteínas de la Membrana/metabolismo , Ratones , Ratones Mutantes , Fosforilación/genética , Receptores AMPA/genética , Receptores AMPA/fisiología
13.
Neuron ; 61(3): 385-96, 2009 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-19217376

RESUMEN

Glutamate receptors play major roles in excitatory transmission in the vertebrate brain. Among ionotropic glutamate receptors (AMPA, kainate, NMDA), AMPA receptors mediate fast synaptic transmission and require TARP auxiliary subunits. NMDA receptors and kainate receptors play roles in synaptic transmission, but it remains uncertain whether these ionotropic glutamate receptors also have essential subunits. Using a proteomic screen, we have identified NETO2, a brain-specific protein of unknown function, as an interactor with kainate-type glutamate receptors. NETO2 modulates the channel properties of recombinant and native kainate receptors without affecting trafficking of the receptors and also modulates kainate-receptor-mediated mEPSCs. Furthermore, we found that kainate receptors regulate the surface expression of NETO2 and that NETO2 protein levels and surface expression are decreased in mice lacking the kainate receptor GluR6. The results show that NETO2 is a kainate receptor subunit with significant effects on glutamate signaling mechanisms in brain.


Asunto(s)
Encéfalo/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Receptores de Ácido Kaínico/metabolismo , Membranas Sinápticas/metabolismo , Transmisión Sináptica/genética , Animales , Encéfalo/ultraestructura , Línea Celular , Células Cultivadas , Potenciales Postsinápticos Excitadores/genética , Femenino , Ácido Glutámico/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Ratones , Ratones Mutantes , Neuronas/ultraestructura , Técnicas de Placa-Clamp , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Proteómica , Ratas , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/aislamiento & purificación , Membranas Sinápticas/ultraestructura , Receptor de Ácido Kaínico GluK2
14.
Exp Cell Res ; 314(5): 1155-62, 2008 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-18201694

RESUMEN

The X11/MINT family proteins are adaptor scaffolding proteins involved in formation of multiprotein complexes, and trafficking and metabolism of membrane proteins such as the beta-amyloid precursor protein. We found that a significant portion of X11L and X11L2 are recovered in nuclear fraction of mouse brain homogenates. EGFP-X11s were not detected in the nucleus of N2a neuroblastoma cells; however, administration of leptomycin B (LMB) induced substantial nuclear accumulation of EGFP-X11L and EGFP-X11L2, while EGFP-X11 showed little accumulation. Fluorescence loss in photobleaching (FLIP) analysis indicated that EGFP-X11L2 and EGFP-X11L are shuttled between the cytoplasm and nucleus, the former more effectively than the latter. We identified a nuclear export signal (NES) in the N-terminus of X11L2, mutation of which induces nuclear accumulation of EGFP-X11L2 in the absence of LMB. X11L2 fused to the Gal4 DNA binding domain (DBD) showed transcriptional activity, suggesting that X11L2 could function as a transcriptional activator if tethered near a promoter. Interestingly, attenuation of the nucleo-cytoplasmic shuttling of GAL4-DBD-X11L2 by mutating the NES or attaching the SV40 nuclear localization signal significantly decreased the apparent transcriptional activity. Our observations suggest that X11L2 functions in the nucleus by a mechanism distinct from conventional transactivators.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas Portadoras/metabolismo , Activación Transcripcional , Proteínas Adaptadoras Transductoras de Señales , Animales , Química Encefálica , Cadherinas/metabolismo , Cadherinas/fisiología , Proteínas Portadoras/fisiología , Ácidos Grasos Insaturados/farmacología , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Señales de Exportación Nuclear , Proteínas/metabolismo , Proteínas/fisiología , Distribución Tisular
15.
J Biol Chem ; 280(51): 42364-74, 2005 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-16223726

RESUMEN

The amyloid beta-protein precursor intracellular domain fragment (AICD) is generated from amyloid beta-protein precursor by consecutive cleavages. AICD is thought to activate FE65-dependent gene expression, but the molecular mechanism remains under consideration. We found that dimeric 14-3-3gamma bound both AICD and FE65 simultaneously, and this binding facilitated FE65-dependent gene transactivation by enhancing the association of AICD with FE65. 14-3-3gamma bound to the 667VTPEER672 motif of AICD and, most interestingly, the phosphorylation of AICD at Thr-668 in this motif inhibited the interaction with 14-3-3gamma and blocked gene transactivation. 14-3-3gamma required a sequence between the WW domain and the first phosphotyrosine interaction domain of FE65 for association with FE65. Deletion of this region blocked 14-3-3gamma binding to FE65 and suppressed AICD-mediated FE65-dependent gene transactivation, although the deletion mutant FE65 was still able to bind Tip60, a histone acetyltransferase that forms a complex with FE65 in the nucleus. Taken together, these data demonstrate that 14-3-3gamma facilitates FE65-dependent gene transactivation by forming a complex containing AICD and FE65, and phosphorylation of AICD down-regulates FE65-dependent gene transactivation through the dissociation of 14-3-3gamma and/or FE65 from AICD. Our findings suggest that multiple interactions of AICD with FE65 and 14-3-3gamma modulate FE65-dependent gene transactivation.


Asunto(s)
Proteínas 14-3-3/fisiología , Precursor de Proteína beta-Amiloide/fisiología , Citoplasma/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Activación Transcripcional/fisiología , Proteínas 14-3-3/genética , Animales , Western Blotting , Histona Acetiltransferasas/metabolismo , Humanos , Inmunoprecipitación , Lisina Acetiltransferasa 5 , Ratones , Mutagénesis Sitio-Dirigida , Fosforilación , Unión Proteica , Interferencia de ARN
16.
Biochem J ; 374(Pt 1): 261-8, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12780348

RESUMEN

XB51 (derived from X11-like binding protein of clone number 51) was isolated by yeast two-hybrid cDNA screening using the N-terminal domain of X11L (X11-like protein) as a bait. X11L is a neuron-specific adaptor protein that is known to down-regulate APP (beta-amyloid precursor protein) metabolism by associating with the cytoplasmic domain of APP, but the detailed mechanisms are still unknown. Thus the X11L-associated protein XB51 is believed to regulate APP metabolism by modifying X11L function through its interaction with X11L. Here we report that the hXB51 (human XB51 ) gene can yield two transcripts, one with exon 9 spliced out (resulting in the hXB51beta isoform) and the other containing exon 9 (yielding the hXB51alpha isoform). hXB51alpha binds to X11L to form a tripartite complex composed of hXB51alpha, X11L and APP. Complex-formation results in blocking X11L's suppression of Abeta (beta-amyloid) generation from APP. hXB51beta associates with X11L and inhibits its interaction with APP. However, hXB51beta suppresses Abeta generation and secretion in an X11L-independent manner. Thus the hXB51 isoforms regulate Abeta generation differently, either enhancing it by modifying the association of X11L with APP or suppressing it in an X11L-independent manner. These observations advance our understanding of the molecular mechanisms regulating intracellular Abeta production and the pathogenesis of Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Proteínas Portadoras/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Péptidos beta-Amiloides/genética , Secuencia de Bases , Sitios de Unión , Proteínas de Unión al Calcio , Clonación Molecular , Cartilla de ADN , ADN Complementario , Regulación de la Expresión Génica , Humanos , Proteínas del Tejido Nervioso/genética , Plásmidos/genética , Unión Proteica , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/metabolismo
17.
J Biol Chem ; 278(49): 49448-58, 2003 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-12972431

RESUMEN

Previously we found that X11-like protein (X11L) associates with amyloid beta-protein precursor (APP). X11L stabilizes APP metabolism and suppresses the secretion of the amyloid beta-protein (Abeta) that are the pathogenic agents of Alzheimer's disease (AD). Here we found that Alcadein (Alc), a novel membrane protein family that contains cadherin motifs and originally reported as calsyntenins, also interacted with X11L. Alc was abundant in the brain and occurred in the same areas of the brain as X11L. X11L could simultaneously associate with APP and Alc, resulting in the formation of a tripartite complex in brain. The tripartite complex stabilized intracellular APP metabolism and enhanced the X11L-mediated suppression of Abeta secretion that is due to the retardation of intracellular APP maturation. X11L and Alc also formed another complex with C99, a carboxyl-terminal fragment of APP cleaved at the beta-site (CTFbeta). The formation of the Alc.X11L.C99 complex inhibited the interaction of C99 with presenilin, which strongly suppressed the gamma-cleavage of C99. In AD patient brains, Alc and APP were particularly colocalized in dystrophic neurites in senile plaques. Deficiencies in the X11L-mediated interaction between Alc and APP and/or CTFbeta enhanced the production of Abeta, which may be related to the development or progression of AD.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Cadherinas/fisiología , Proteínas Portadoras , Proteínas del Tejido Nervioso , Enfermedad de Alzheimer/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Cadherinas/química , Cadherinas/metabolismo , Clonación Molecular , ADN Complementario , Humanos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Pruebas de Precipitina , Homología de Secuencia de Aminoácido
18.
J Neurochem ; 81(6): 1223-32, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12068070

RESUMEN

The X11-like (X11L) protein was originally isolated as a protein bound to the cytoplasmic domain of the beta-amyloid precursor protein (APP), which is associated with Alzheimer's disease. In mammals, X11L is believed to play an important role in the regulation of APP metabolism. Here we isolated and characterized the Drosophila X11L (dX11L) protein, also may be referred to this protein as Drosophila Mint (dMint), Lin 10 (dLin10) or X11 (dX11), is thought to be expressed in neuronal tissues from late embryonic through to the adult stages of the fly. The phosphotyrosine interaction domain of dX11L interacts with the cytoplasmic domain of the Drosophila amyloid precursor protein-like (APPL) similar to the way human X11L (hX11L) interacts with APP. Overexpression of dX11L on post-mitotic neurons had a lethal effect on flies and, when it was localized to the eye imaginal disc, disruption of compound eye morphology due to enhanced apoptosis of neuronal cells was observed. Overexpression of hX11L and the PDZ domain of dX11L resulted in identical eye phenotypes. The PDZ domain is highly conserved between Drosophila and human, and appears to be responsible for this phenotype. Our findings suggest that the X11L family may be involved with the regulation of apoptosis during neural cell development and that aberrant X11L function could be contribute in this way to the neuronal degeneration observed in Alzheimer's disease.


Asunto(s)
Drosophila/embriología , Proteínas Nucleares/fisiología , Secuencia de Aminoácidos/genética , Precursor de Proteína beta-Amiloide/fisiología , Animales , Moléculas de Adhesión Celular , Supervivencia Celular/fisiología , Citoplasma/fisiología , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Proteínas de Drosophila , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Datos de Secuencia Molecular , Tejido Nervioso/citología , Tejido Nervioso/embriología , Neuronas/citología , Neuronas/fisiología , Estructura Terciaria de Proteína/fisiología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA