Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(17): e2120439119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35412862

RESUMEN

Long-duration spaceflight induces changes to the brain and cerebrospinal fluid compartments and visual acuity problems known as spaceflight-associated neuro-ocular syndrome (SANS). The clinical relevance of these changes and whether they equally affect crews of different space agencies remain unknown. We used MRI to analyze the alterations occurring in the perivascular spaces (PVS) in NASA and European Space Agency astronauts and Roscosmos cosmonauts after a 6-mo spaceflight on the International Space Station (ISS). We found increased volume of basal ganglia PVS and white matter PVS (WM-PVS) after spaceflight, which was more prominent in the NASA crew than the Roscosmos crew. Moreover, both crews demonstrated a similar degree of lateral ventricle enlargement and decreased subarachnoid space at the vertex, which was correlated with WM-PVS enlargement. As all crews experienced the same environment aboard the ISS, the differences in WM-PVS enlargement may have been due to, among other factors, differences in the use of countermeasures and high-resistive exercise regimes, which can influence brain fluid redistribution. Moreover, NASA astronauts who developed SANS had greater pre- and postflight WM-PVS volumes than those unaffected. These results provide evidence for a potential link between WM-PVS fluid and SANS.


Asunto(s)
Astronautas , Líquido Cefalorraquídeo , Sistema Glinfático , Vuelo Espacial , Trastornos de la Visión , Líquido Cefalorraquídeo/diagnóstico por imagen , Sistema Glinfático/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Trastornos de la Visión/líquido cefalorraquídeo , Trastornos de la Visión/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
2.
Hum Brain Mapp ; 45(6): e26662, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38646998

RESUMEN

OBJECTIVES: Accurate presurgical brain mapping enables preoperative risk assessment and intraoperative guidance. This cross-sectional study investigated whether constrained spherical deconvolution (CSD) methods were more accurate than diffusion tensor imaging (DTI)-based methods for presurgical white matter mapping using intraoperative direct electrical stimulation (DES) as the ground truth. METHODS: Five different tractography methods were compared (three DTI-based and two CSD-based) in 22 preoperative neurosurgical patients undergoing surgery with DES mapping. The corticospinal tract (CST, N = 20) and arcuate fasciculus (AF, N = 7) bundles were reconstructed, then minimum distances between tractograms and DES coordinates were compared between tractography methods. Receiver-operating characteristic (ROC) curves were used for both bundles. For the CST, binary agreement, linear modeling, and posthoc testing were used to compare tractography methods while correcting for relative lesion and bundle volumes. RESULTS: Distance measures between 154 positive (functional response, pDES) and negative (no response, nDES) coordinates, and 134 tractograms resulted in 860 data points. Higher agreement was found between pDES coordinates and CSD-based compared to DTI-based tractograms. ROC curves showed overall higher sensitivity at shorter distance cutoffs for CSD (8.5 mm) compared to DTI (14.5 mm). CSD-based CST tractograms showed significantly higher agreement with pDES, which was confirmed by linear modeling and posthoc tests (PFWE < .05). CONCLUSIONS: CSD-based CST tractograms were more accurate than DTI-based ones when validated using DES-based assessment of motor and sensory function. This demonstrates the potential benefits of structural mapping using CSD in clinical practice.


Asunto(s)
Mapeo Encefálico , Imagen de Difusión Tensora , Estimulación Eléctrica , Humanos , Imagen de Difusión Tensora/métodos , Imagen de Difusión Tensora/normas , Adulto , Femenino , Masculino , Persona de Mediana Edad , Estudios Transversales , Estimulación Eléctrica/métodos , Mapeo Encefálico/métodos , Mapeo Encefálico/normas , Tractos Piramidales/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto Joven , Cuidados Preoperatorios/métodos , Cuidados Preoperatorios/normas , Anciano
3.
Hum Brain Mapp ; 45(1): e26537, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38140712

RESUMEN

Synaptic plasticity relies on the balance between excitation and inhibition in the brain. As the primary inhibitory and excitatory neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate (Glu), play critical roles in synaptic plasticity and learning. However, the role of these neurometabolites in motor learning is still unclear. Furthermore, it remains to be investigated which neurometabolite levels from the regions composing the sensorimotor network predict future learning outcome. Here, we studied the role of baseline neurometabolite levels in four task-related brain areas during different stages of motor skill learning under two different feedback (FB) conditions. Fifty-one healthy participants were trained on a bimanual motor task over 5 days while receiving either concurrent augmented visual FB (CA-VFB group, N = 25) or terminal intrinsic visual FB (TA-VFB group, N = 26) of their performance. Additionally, MRS-measured baseline GABA+ (GABA + macromolecules) and Glx (Glu + glutamine) levels were measured in the primary motor cortex (M1), primary somatosensory cortex (S1), dorsolateral prefrontal cortex (DLPFC), and medial temporal cortex (MT/V5). Behaviorally, our results revealed that the CA-VFB group outperformed the TA-VFB group during task performance in the presence of augmented VFB, while the TA-VFB group outperformed the CA-VFB group in the absence of augmented FB. Moreover, baseline M1 GABA+ levels positively predicted and DLPFC GABA+ levels negatively predicted both initial and long-term motor learning progress in the TA-VFB group. In contrast, baseline S1 GABA+ levels positively predicted initial and long-term motor learning progress in the CA-VFB group. Glx levels did not predict learning progress. Together, these findings suggest that baseline GABA+ levels predict motor learning capability, yet depending on the FB training conditions afforded to the participants.


Asunto(s)
Ácido Glutámico , Aprendizaje , Humanos , Aprendizaje/fisiología , Inhibición Psicológica , Destreza Motora , Ácido gamma-Aminobutírico
4.
Cereb Cortex ; 33(3): 622-633, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35253853

RESUMEN

The social brain hypothesis posits that a disproportionate encephalization in primates enabled to adapt behavior to a social context. Also, it has been proposed that phylogenetically recent brain areas are disproportionally affected by neurodegeneration. Using structural and functional magnetic resonance imaging, the present study investigates brain-behavior associations and neural integrity of hyperspecialized and domain-general cortical social brain areas in behavioral variant frontotemporal dementia (bvFTD). The results revealed that both structure and function of hyperspecialized social areas in the middle portion of the superior temporal sulcus (STS) are compromised in bvFTD, while no deterioration was observed in domain general social areas in the posterior STS. While the structural findings adhered to an anterior-posterior gradient, the functional group differences only occurred in the hyperspecialized locations. Activity in specialized regions was associated with structural integrity of the amygdala and with social deficits in bvFTD. In conclusion, the results are in line with the paleo-neurology hypothesis positing that neurodegeneration primarily hits cortical areas showing increased specialization, but also with the compatible alternative explanation that anterior STS regions degenerate earlier, based on stronger connections to and trans-neuronal spreading from regions affected early in bvFTD.


Asunto(s)
Demencia Frontotemporal , Humanos , Demencia Frontotemporal/patología , Encéfalo , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico , Pruebas Neuropsicológicas
5.
J Neurosci ; 42(6): 1119-1130, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34876470

RESUMEN

Recent studies suggest an important role of the principal inhibitory neurotransmitter GABA for motor performance in the context of aging. Nonetheless, as previous magnetic resonance spectroscopy (MRS) studies primarily reported resting-state GABA levels, much less is known about transient changes in GABA levels during motor task performance and how these relate to behavior and brain activity patterns. Therefore, we investigated GABA+ levels of left primary sensorimotor cortex (SM1) acquired before, during, and after execution of a unimanual/bimanual action selection task in 30 (human) young adults (YA; age 24.5 ± 4.1, 15 male) and 30 older adults (OA; age 67.8 ± 4.9, 14 male). In addition to task-related MRS data, task-related functional magnetic resonance imaging (fMRI) data were acquired. Behavioral results indicated lower motor performance in OA as opposed to YA, particularly in complex task conditions. MRS results demonstrated lower GABA+ levels in OA as compared with YA. Furthermore, a transient task-related decrease of GABA+ levels was observed, regardless of age. Notably, this task-induced modulation of GABA+ levels was linked to task-related brain activity patterns in SM1 such that a more profound task-induced instantaneous lowering of GABA+ was related to higher SM1 activity. Additionally, higher brain activity was related to better performance in the bimanual conditions, despite some age-related differences. Finally, the modulatory capacity of GABA+ was positively related to motor performance in OA but not YA. Together, these results underscore the importance of transient dynamical changes in neurochemical content for brain function and behavior, particularly in the context of aging.SIGNIFICANCE STATEMENT Emerging evidence designates an important role to regional GABA levels in motor control, especially in the context of aging. However, it remains unclear whether changes in GABA levels emerge when executing a motor task and how these changes relate to brain activity patterns and performance. Here, we identified a transient decrease of sensorimotor GABA+ levels during performance of an action selection task across young adults (YA) and older adults (OA). Interestingly, whereas a more profound GABA+ modulation related to higher brain activity across age groups, its association with motor performance differed across age groups. Within OA, our results highlighted a functional merit of a task-related release from inhibitory tone, i.e. lowering regional GABA+ levels was associated with task-relevant brain activity.


Asunto(s)
Envejecimiento/fisiología , Desempeño Psicomotor/fisiología , Corteza Sensoriomotora/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adulto , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino
6.
Cancer ; 129(7): 1105-1116, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36625501

RESUMEN

BACKGROUND: Interventions that target cancer-related cognitive impairment (CRCI) to improve the quality of life of cancer survivors are needed. In this study, the potential of a mindfulness-based intervention to reduce CRCI in breast cancer survivors, compared with physical training and a wait list control group, was investigated. METHODS: Breast cancer survivors with cognitive complaints (N = 117) were randomly allocated to a mindfulness (n = 43), physical training (n = 36), or wait list control condition (n = 38). Participants completed neuropsychological tests and questionnaires before the intervention, immediately after, and 3 months after intervention. The primary outcome measure was the change in cognitive complaints over time. Secondary outcomes were objective cognitive impairment and psychological well-being. All outcomes were compared between groups over time using linear mixed models, including participants with missing values. RESULTS: Of the 117 included participants, 96 completed the three assessments. Participants in the three groups reported decreased cognitive complaints after intervention, without group differences. There were no between-group differences in objective cognitive impairment after intervention compared with baseline. Compared with the wait list control group, participants reported increased mindfulness skills and reduced emotional distress after mindfulness and reduced emotional distress and fatigue after physical training. CONCLUSION: Contrary to the hypothesis, all groups reported an improvement in cognitive complaints over time. It is suggested that priming and acknowledgment of CRCI might alter the experience of cognitive impairment. Additionally, both mindfulness-based intervention and physical training can improve psychological well-being of breast cancer survivors with cognitive complaints.


Asunto(s)
Neoplasias de la Mama , Supervivientes de Cáncer , Disfunción Cognitiva , Atención Plena , Femenino , Humanos , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/terapia , Neoplasias de la Mama/psicología , Supervivientes de Cáncer/psicología , Cognición , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Calidad de Vida
7.
Hum Brain Mapp ; 44(7): 2741-2753, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36840930

RESUMEN

We explored structural brain connectomes in children with spastic unilateral cerebral palsy (uCP) and its relation to sensory-motor function using graph theory. In 46 children with uCP (mean age = 10 years 7 months ± 2 years 9 months; Manual Ability Classification System I = 15, II = 16, III = 15) we assessed upper limb somatosensory and motor function. We collected multi-shell diffusion-weighted, T1-weighted and T2-FLAIR MRI and identified the corticospinal tract (CST) wiring pattern using transcranial magnetic stimulation. Structural connectomes were constructed using Virtual Brain Grafting-modified FreeSurfer parcellations and multi-shell multi-tissue constrained spherical deconvolution-based anatomically-constrained tractography. Graph metrics (characteristic path length, global/local efficiency and clustering coefficient) of the whole brain, the ipsilesional/contralesional hemisphere, and the full/ipsilesional/contralesional sensory-motor network were compared between lesion types (periventricular white matter (PWM) = 28, cortical and deep gray matter (CDGM) = 18) and CST-wiring patterns (ipsilateral = 14, bilateral = 14, contralateral = 12, unknown = 6) using ANCOVA with age as covariate. Using elastic-net regularized regression we investigated how graph metrics, lesion volume, lesion type, CST-wiring pattern and age predicted sensory-motor function. In both the whole brain and subnetworks, we observed a hyperconnectivity pattern in children with CDGM-lesions compared with PWM-lesions, with higher clustering coefficient (p = [<.001-.047], η p 2 =[0.09-0.27]), characteristic path length (p = .003, η p 2 =0.19) and local efficiency (p = [.001-.02], η p 2 =[0.11-0.21]), and a lower global efficiency with age (p = [.01-.04], η p 2 =[0.09-0.15]). No differences were found between CST-wiring groups. Overall, good predictions of sensory-motor function were obtained with elastic-net regression (R2  = .40-.87). CST-wiring pattern was the strongest predictor for motor function. For somatosensory function, all independent variables contributed equally to the model. In conclusion, we demonstrated the potential of structural connectomics in understanding disease severity and brain development in children with uCP.


Asunto(s)
Parálisis Cerebral , Conectoma , Humanos , Niño , Encéfalo , Imagen por Resonancia Magnética , Extremidad Superior
8.
Neuroimage ; 254: 119029, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35231632

RESUMEN

Virtual dissection of white matter (WM) using diffusion MRI tractography is confounded by its poor reproducibility. Despite the increased adoption of advanced reconstruction models, early region-of-interest driven protocols based on diffusion tensor imaging (DTI) remain the dominant reference for virtual dissection protocols. Here we bridge this gap by providing a comprehensive description of typical WM anatomy reconstructed using a reproducible automated subject-specific parcellation-based approach based on probabilistic constrained-spherical deconvolution (CSD) tractography. We complement this with a WM template in MNI space comprising 68 bundles, including all associated anatomical tract selection labels and associated automated workflows. Additionally, we demonstrate bundle inter- and intra-subject variability using 40 (20 test-retest) datasets from the human connectome project (HCP) and 5 sessions with varying b-values and number of b-shells from the single-subject Multiple Acquisitions for Standardization of Structural Imaging Validation and Evaluation (MASSIVE) dataset. The most reliably reconstructed bundles were the whole pyramidal tracts, primary corticospinal tracts, whole superior longitudinal fasciculi, frontal, parietal and occipital segments of the corpus callosum and middle cerebellar peduncles. More variability was found in less dense bundles, e.g., the fornix, dentato-rubro-thalamic tract (DRTT), and premotor pyramidal tract. Using the DRTT as an example, we show that this variability can be reduced by using a higher number of seeding attempts. Overall inter-session similarity was high for HCP test-retest data (median weighted-dice = 0.963, stdev = 0.201 and IQR = 0.099). Compared to the HCP-template bundles there was a high level of agreement for the HCP test-retest data (median weighted-dice = 0.747, stdev = 0.220 and IQR = 0.277) and for the MASSIVE data (median weighted-dice = 0.767, stdev = 0.255 and IQR = 0.338). In summary, this WM atlas provides an overview of the capabilities and limitations of automated subject-specific probabilistic CSD tractography for mapping white matter fasciculi in healthy adults. It will be most useful in applications requiring a reproducible parcellation-based dissection protocol, and as an educational resource for applied neuroimaging and clinical professionals.


Asunto(s)
Conectoma , Sustancia Blanca , Adulto , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora/métodos , Humanos , Reproducibilidad de los Resultados , Sustancia Blanca/diagnóstico por imagen
9.
Eur J Nucl Med Mol Imaging ; 49(2): 664-680, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34398271

RESUMEN

PURPOSE: Human ageing is associated with a regional reduction in cerebral neuronal activity as assessed by numerous studies on brain glucose metabolism and perfusion, grey matter (GM) density and white matter (WM) integrity. As glucose metabolism may impact energetics to maintain myelin integrity, but changes in functional connectivity may also alter regional metabolism, we conducted a cross-sectional simultaneous FDG PET/MR study in a large cohort of healthy volunteers with a wide age range, to directly assess the underlying associations between reduced glucose metabolism, GM atrophy and decreased WM integrity in a single ageing cohort. METHODS: In 94 healthy subjects between 19.9 and 82.5 years (mean 50.1 ± 17.1; 47 M/47F, MMSE ≥ 28), simultaneous FDG-PET, structural MR and diffusion tensor imaging (DTI) were performed. Voxel-wise associations between age and grey matter (GM) density, RBV partial-volume corrected (PVC) glucose metabolism, white matter (WM) fractional anisotropy (FA) and mean diffusivity (MD), and age were assessed. Clusters representing changes in glucose metabolism correlating significantly with ageing were used as seed regions for tractography. Both linear and quadratic ageing models were investigated. RESULTS: An expected age-related reduction in GM density was observed bilaterally in the frontal, lateral and medial temporal cortex, striatum and cerebellum. After PVC, relative FDG uptake was negatively correlated with age in the inferior and midfrontal, cingulate and parietal cortex and subcortical regions, bilaterally. FA decreased with age throughout the entire brain WM. Four white matter tracts were identified connecting brain regions with declining glucose metabolism with age. Within these, relative FDG uptake in both origin and target clusters correlated positively with FA (0.32 ≤ r ≤ 0.71) and negatively with MD (- 0.75 ≤ r ≤ - 0.41). CONCLUSION: After appropriate PVC, we demonstrated that regional cerebral glucose metabolic declines with age and that these changes are related to microstructural changes in the interconnecting WM tracts. The temporal course and potential causality between ageing effects on glucose metabolism and WM integrity should be further investigated in longitudinal cohort PET/MR studies.


Asunto(s)
Envejecimiento , Glucosa , Sustancia Blanca , Envejecimiento/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Estudios Transversales , Imagen de Difusión Tensora/métodos , Glucosa/metabolismo , Sustancia Gris/diagnóstico por imagen , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
10.
J Neurooncol ; 160(3): 619-629, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36346497

RESUMEN

OBJECTIVE: As preservation of cognitive functioning increasingly becomes important in the light of ameliorated survival after intracranial tumor treatments, identification of eloquent brain areas would enable optimization of these treatments. METHODS: This cohort study enrolled adult intracranial tumor patients who received neuropsychological assessments pre-irradiation, estimating processing speed, verbal fluency and memory. Anatomical magnetic resonance imaging scans were used for multivariate voxel-wise lesion-symptom predictions of the test scores (corrected for age, gender, educational level, histological subtype, surgery, and tumor volume). Potential effects of histological and molecular subtype and corresponding WHO grades on the risk of cognitive impairment were investigated using Chi square tests. P-values were adjusted for multiple comparisons (p < .001 and p < .05 for voxel- and cluster-level, resp.). RESULTS: A cohort of 179 intracranial tumor patients was included [aged 19-85 years, median age (SD) = 58.46 (14.62), 50% females]. In this cohort, test-specific impairment was detected in 20-30% of patients. Higher WHO grade was associated with lower processing speed, cognitive flexibility and delayed memory in gliomas, while no acute surgery-effects were found. No grading, nor surgery effects were found in meningiomas. The voxel-wise analyses showed that tumor locations in left temporal areas and right temporo-parietal areas were related to verbal memory and processing speed, respectively. INTERPRETATION: Patients with intracranial tumors affecting the left temporal areas and right temporo-parietal areas might specifically be vulnerable for lower verbal memory and processing speed. These specific patients at-risk might benefit from early-stage interventions. Furthermore, based on future validation studies, imaging-informed surgical and radiotherapy planning could further be improved.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Meníngeas , Femenino , Humanos , Adulto , Masculino , Estudios de Cohortes , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Glioma/patología , Pruebas Neuropsicológicas , Imagen por Resonancia Magnética/métodos
11.
Brain ; 144(12): 3756-3768, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34534284

RESUMEN

Language dysfunction is common in Alzheimer's disease. There is increasing interest in the preclinical or asymptomatic phase of Alzheimer's disease. Here we examined in 35 cognitively intact older adults (age range 52-78 years at baseline, 17 male) in a longitudinal study design the association between accumulation of amyloid over a 5-6-year period, measured using PET, and functional changes in the language network measured over the same time period using task-related functional MRI. In the same participants, we also determined the association between the longitudinal functional MRI changes and a cross-sectional measure of tau load as measured with 18F-AV1451 PET. As predicted, the principal change occurred in posterior temporal cortex. In the cortex surrounding the right superior temporal sulcus, the response amplitude during the associative-semantic versus visuo-perceptual task increased over time as amyloid load accumulated (Pcorrected = 0.008). In a whole-brain voxel-wise analysis, amyloid accumulation was also associated with a decrease in response amplitude in the left inferior frontal sulcus (Pcorrected = 0.009) and the right dorsomedial prefrontal cortex (Pcorrected = 0.005). In cognitively intact older adults, cross-sectional tau load was not associated with longitudinal changes in functional MRI response amplitude. Our findings confirm the central role of the neocortex surrounding the posterior superior temporal sulcus as the area of predilection within the language network in the earliest stages of Alzheimer's disease. Amyloid accumulation has an impact on cognitive brain circuitry in the asymptomatic phase of Alzheimer's disease.


Asunto(s)
Envejecimiento/patología , Péptidos beta-Amiloides , Lenguaje , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiopatología , Anciano , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Lóbulo Temporal/patología
12.
Stereotact Funct Neurosurg ; 100(5-6): 340-345, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36446339

RESUMEN

Deep brain stimulation is an established treatment option for both essential tremor (ET) and Parkinson's disease (PD), although typically targeting different brain structures. Some patients are diagnosed with comorbid ET and PD. Selecting the optimal stimulation target in these patients is challenging. We present a patient with comorbid ET and PD in whom we used bilaterally a single parietal trajectory to align the dentato-rubro-thalamic tract and the subthalamic nucleus. Although parietal trajectories are challenging, we reached satisfactory outcomes for both conditions without complications. Single-electrode deep brain stimulation of the dentato-rubro-thalamic tract and the subthalamic nucleus through a parietal approach may represent a feasible treatment option in this patient group.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/cirugía , Temblor Esencial/complicaciones , Temblor Esencial/terapia , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Tálamo
13.
Proc Natl Acad Sci U S A ; 116(21): 10531-10536, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31061119

RESUMEN

Long-duration spaceflight induces detrimental changes in human physiology. Its residual effects and mechanisms remain unclear. We prospectively investigated the changes in cerebrospinal fluid (CSF) volume of the brain ventricular regions in space crew by means of a region of interest analysis on structural brain scans. Cosmonaut MRI data were investigated preflight (n = 11), postflight (n = 11), and at long-term follow-up 7 mo after landing (n = 7). Post hoc analyses revealed a significant difference between preflight and postflight values for all supratentorial ventricular structures, i.e., lateral ventricle (mean % change ± SE = 13.3 ± 1.9), third ventricle (mean % change ± SE = 10.4 ± 1.1), and the total ventricular volume (mean % change ± SE = 11.6 ± 1.5) (all P < 0.0001), with higher volumes at postflight. At follow-up, these structures did not quite reach baseline levels, with still residual increases in volume for the lateral ventricle (mean % change ± SE = 7.7 ± 1.6; P = 0.0009), the third ventricle (mean % change ± SE = 4.7 ± 1.3; P = 0.0063), and the total ventricular volume (mean % change ± SE = 6.4 ± 1.3; P = 0.0008). This spatiotemporal pattern of CSF compartment enlargement and recovery points to a reduced CSF resorption in microgravity as the underlying cause. Our results warrant more detailed and longer longitudinal follow-up. The clinical impact of our findings on the long-term cosmonauts' health and their relation to ocular changes reported in space travelers requires further prospective studies.


Asunto(s)
Ventrículos Cerebrales , Vuelo Espacial , Adulto , Estudios de Casos y Controles , Ventrículos Cerebrales/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Estudios Prospectivos
14.
Neuroimage ; 229: 117731, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33454411

RESUMEN

Brain atlases and templates are at the heart of neuroimaging analyses, for which they facilitate multimodal registration, enable group comparisons and provide anatomical reference. However, as atlas-based approaches rely on correspondence mapping between images they perform poorly in the presence of structural pathology. Whilst several strategies exist to overcome this problem, their performance is often dependent on the type, size and homogeneity of any lesions present. We therefore propose a new solution, referred to as Virtual Brain Grafting (VBG), which is a fully-automated, open-source workflow to reliably parcellate magnetic resonance imaging (MRI) datasets in the presence of a broad spectrum of focal brain pathologies, including large, bilateral, intra- and extra-axial, heterogeneous lesions with and without mass effect. The core of the VBG approach is the generation of a lesion-free T1-weighted image, which enables further image processing operations that would otherwise fail. Here we validated our solution based on Freesurfer recon-all parcellation in a group of 10 patients with heterogeneous gliomatous lesions, and a realistic synthetic cohort of glioma patients (n = 100) derived from healthy control data and patient data. We demonstrate that VBG outperforms a non-VBG approach assessed qualitatively by expert neuroradiologists and Mann-Whitney U tests to compare corresponding parcellations (real patients U(6,6) = 33, z = 2.738, P < .010, synthetic-patients U(48,48) = 2076, z = 7.336, P < .001). Results were also quantitatively evaluated by comparing mean dice scores from the synthetic-patients using one-way ANOVA (unilateral VBG = 0.894, bilateral VBG = 0.903, and non-VBG = 0.617, P < .001). Additionally, we used linear regression to show the influence of lesion volume, lesion overlap with, and distance from the Freesurfer volumes of interest, on labeling accuracy. VBG may benefit the neuroimaging community by enabling automated state-of-the-art MRI analyses in clinical populations using methods such as FreeSurfer, CAT12, SPM, Connectome Workbench, as well as structural and functional connectomics. To fully maximize its availability, VBG is provided as open software under a Mozilla 2.0 license (https://github.com/KUL-Radneuron/KUL_VBG).


Asunto(s)
Mapeo Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Realidad Virtual , Adolescente , Adulto , Anciano , Encéfalo/fisiopatología , Mapeo Encefálico/tendencias , Neoplasias Encefálicas/fisiopatología , Conectoma/métodos , Conectoma/tendencias , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/tendencias , Imagen por Resonancia Magnética/tendencias , Masculino , Persona de Mediana Edad , Flujo de Trabajo , Adulto Joven
15.
Neuroimage ; 243: 118502, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34433094

RESUMEN

White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.


Asunto(s)
Imagen de Difusión Tensora/métodos , Disección/métodos , Sustancia Blanca/diagnóstico por imagen , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Vías Nerviosas/diagnóstico por imagen
16.
N Engl J Med ; 379(7): 611-622, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-29766770

RESUMEN

BACKGROUND: Under current guidelines, intravenous thrombolysis is used to treat acute stroke only if it can be ascertained that the time since the onset of symptoms was less than 4.5 hours. We sought to determine whether patients with stroke with an unknown time of onset and features suggesting recent cerebral infarction on magnetic resonance imaging (MRI) would benefit from thrombolysis with the use of intravenous alteplase. METHODS: In a multicenter trial, we randomly assigned patients who had an unknown time of onset of stroke to receive either intravenous alteplase or placebo. All the patients had an ischemic lesion that was visible on MRI diffusion-weighted imaging but no parenchymal hyperintensity on fluid-attenuated inversion recovery (FLAIR), which indicated that the stroke had occurred approximately within the previous 4.5 hours. We excluded patients for whom thrombectomy was planned. The primary end point was favorable outcome, as defined by a score of 0 or 1 on the modified Rankin scale of neurologic disability (which ranges from 0 [no symptoms] to 6 [death]) at 90 days. A secondary outcome was the likelihood that alteplase would lead to lower ordinal scores on the modified Rankin scale than would placebo (shift analysis). RESULTS: The trial was stopped early owing to cessation of funding after the enrollment of 503 of an anticipated 800 patients. Of these patients, 254 were randomly assigned to receive alteplase and 249 to receive placebo. A favorable outcome at 90 days was reported in 131 of 246 patients (53.3%) in the alteplase group and in 102 of 244 patients (41.8%) in the placebo group (adjusted odds ratio, 1.61; 95% confidence interval [CI], 1.09 to 2.36; P=0.02). The median score on the modified Rankin scale at 90 days was 1 in the alteplase group and 2 in the placebo group (adjusted common odds ratio, 1.62; 95% CI, 1.17 to 2.23; P=0.003). There were 10 deaths (4.1%) in the alteplase group and 3 (1.2%) in the placebo group (odds ratio, 3.38; 95% CI, 0.92 to 12.52; P=0.07). The rate of symptomatic intracranial hemorrhage was 2.0% in the alteplase group and 0.4% in the placebo group (odds ratio, 4.95; 95% CI, 0.57 to 42.87; P=0.15). CONCLUSIONS: In patients with acute stroke with an unknown time of onset, intravenous alteplase guided by a mismatch between diffusion-weighted imaging and FLAIR in the region of ischemia resulted in a significantly better functional outcome and numerically more intracranial hemorrhages than placebo at 90 days. (Funded by the European Union Seventh Framework Program; WAKE-UP ClinicalTrials.gov number, NCT01525290; and EudraCT number, 2011-005906-32 .).


Asunto(s)
Fibrinolíticos/uso terapéutico , Imagen por Resonancia Magnética Intervencional , Accidente Cerebrovascular/tratamiento farmacológico , Terapia Trombolítica/métodos , Activador de Tejido Plasminógeno/uso terapéutico , Enfermedad Aguda , Administración Intravenosa , Anciano , Isquemia Encefálica/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Femenino , Fibrinolíticos/efectos adversos , Humanos , Hemorragias Intracraneales/inducido químicamente , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/cirugía , Trombectomía , Tiempo de Tratamiento , Activador de Tejido Plasminógeno/efectos adversos , Resultado del Tratamiento
17.
BMC Psychiatry ; 21(1): 64, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33509135

RESUMEN

BACKGROUND: Major depressive disorders rank in the top ten causes of ill health in all but four countries worldwide and are the leading cause of years lived with disability in Europe (WHO). Recent research suggests that neurodegenerative pathology may contribute to the development of late-life depression (LLD) in a sub-group of patients and represent a target for prevention and early diagnosis. In parallel, electroconvulsive therapy (ECT), which is the most effective treatment for severe LLD, has been associated with significant brain structural changes. In both LLD and ECT hippocampal volume change plays a central role; however, the neurobiological mechanism underlying it and its relevance for clinical outcomes remain unresolved. METHODS: This is a monocentric, clinical cohort study with a cross-sectional arm evaluating PET-MR imaging and behavioural measures in 64 patients with LLD compared to 64 healthy controls, and a longitudinal arm evaluating the same imaging and behavioural measures after 10 ECT sessions in 20 patients receiving ECT as part of their normal clinical management. Triple tracer PET-MRI data will be used to measure: hippocampal volume (high resolution MRI), synaptic density using [11C]UCB-J, which targets the Synaptic Vesicle Glycoprotein 2A receptor, tau pathology using [18F]MK-6240, and cerebral amyloid using [18F]-Flutemetamol, which targets beta-amyloid neuritic plaques in the brain. Additional MRI measures and ultrasound will assess cerebral vascular structure and brain connectivity. Formal clinical and neuropsychological assessments will be conducted alongside experience sampling and physiological monitoring to assess mood, stress, cognition and psychomotor function. DISCUSSION: The main aim of the study is to identify the origin and consequences of hippocampal volume differences in LLD by investigating how biomarkers of pathological ageing contribute to medial temporal lobe pathology. Studying how synaptic density, tau, amyloid and vascular pathology relate to neuropsychological, psychomotor function, stress and ECT, will increase our pathophysiological understanding of the in vivo molecular, structural and functional alterations occurring in depression and what effect this has on clinical outcome. It may also lead to improvements in the differential diagnosis of depression and dementia yielding earlier, more optimal, cost-effective clinical management. Finally, it will improve our understanding of the neurobiological mechanism of ECT. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03849417 , 21/2/2019.


Asunto(s)
Trastorno Depresivo Mayor , Terapia Electroconvulsiva , Envejecimiento , Biomarcadores , Encéfalo/diagnóstico por imagen , Estudios de Cohortes , Estudios Transversales , Depresión , Europa (Continente) , Humanos , Imagen por Resonancia Magnética
18.
Cancer ; 126(18): 4246-4255, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32639592

RESUMEN

BACKGROUND: Many breast cancer survivors suffer from cognitive complaints after cancer treatment, affecting their quality of life. The objective of this pilot study was to investigate the effect of a blended-care mindfulness-based intervention (MBI) on chemotherapy-related cognitive impairment and functional brain changes. Furthermore, correlations between changes in cognitive functioning and self-reported behavioral factors were investigated. METHODS: Breast cancer survivors (n = 33) who reported cognitive impairment were randomly allocated to a mindfulness condition (n = 18) or a waitlist control condition (n = 15). Patients completed questionnaires on cognitive impairment, emotional distress, and fatigue; neuropsychological tests; and resting-state functional magnetic resonance imaging before the start of MBI (time 1 [T1]), immediately after the completion of an 8-week MBI program (T2), and 3 months postintervention (T3). Resting-state functional connectivity was estimated in the default mode network, the dorsal and salience attention networks, and the frontoparietal network. Mixed model repeated-measures analysis was performed to test the intervention effect. RESULTS: Patients in the mindfulness condition exhibited significantly higher connectivity between the dorsal and salience attention networks after the mindfulness intervention compared with those in the control condition. MBI participants also had reduced subjective cognitive impairment, emotional distress, and fatigue. No intervention effect was observed on neurocognitive tests. CONCLUSIONS: MBI may induce functional brain changes in networks related to attention and may have a positive effect on subjective measures of cognitive impairment in breast cancer survivors. Therefore, MBI could be a suitable intervention to improve quality of life in this population and deserves further study in this context.


Asunto(s)
Disfunción Cognitiva/psicología , Imagen por Resonancia Magnética/métodos , Atención Plena/métodos , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Adulto Joven
19.
Hum Brain Mapp ; 41(13): 3680-3695, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32583940

RESUMEN

Previous research in young adults has demonstrated that both motor learning and transcranial direct current stimulation (tDCS) trigger decreases in the levels of gamma-aminobutyric acid (GABA) in the sensorimotor cortex, and these decreases are linked to greater learning. Less is known about the role of GABA in motor learning in healthy older adults, a knowledge gap that is surprising given the established aging-related reductions in sensorimotor GABA. Here, we examined the effects of motor learning and subsequent tDCS on sensorimotor GABA levels and resting-state functional connectivity in the brains of healthy older participants. Thirty-six older men and women completed a motor sequence learning task before receiving anodal or sham tDCS to the sensorimotor cortex. GABA-edited magnetic resonance spectroscopy of the sensorimotor cortex and resting-state (RS) functional magnetic resonance imaging data were acquired before and after learning/stimulation. At the group level, neither learning nor anodal tDCS significantly modulated GABA levels or RS connectivity among task-relevant regions. However, changes in GABA levels from the baseline to post-learning session were significantly related to motor learning magnitude, age, and baseline GABA. Moreover, the change in functional connectivity between task-relevant regions, including bilateral motor cortices, was correlated with baseline GABA levels. These data collectively indicate that motor learning-related decreases in sensorimotor GABA levels and increases in functional connectivity are limited to those older adults with higher baseline GABA levels and who learn the most. Post-learning tDCS exerted no influence on GABA levels, functional connectivity or the relationships among these variables in older adults.


Asunto(s)
Envejecimiento/fisiología , Conectoma , Espectroscopía de Resonancia Magnética , Actividad Motora/fisiología , Plasticidad Neuronal/fisiología , Corteza Sensoriomotora/fisiología , Aprendizaje Seriado/fisiología , Estimulación Transcraneal de Corriente Directa , Ácido gamma-Aminobutírico/metabolismo , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Desempeño Psicomotor/fisiología , Corteza Sensoriomotora/diagnóstico por imagen , Corteza Sensoriomotora/metabolismo
20.
Eur J Nucl Med Mol Imaging ; 47(9): 2142-2154, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31960098

RESUMEN

PURPOSE: 18F-FDG PET is routinely used as an imaging marker in the early and differential diagnosis of dementing disorders and has incremental value over the clinical neurological and neuropsychological evaluation. Perfusion MR imaging by means of arterial spin labelling (ASL) is an alternative modality to indirectly measure neuronal functioning and could be used as complement measurement in a single MR session in the workup of dementia. Using simultaneous PET-MR, we performed a direct head-to-head comparison between enhanced multiplane tagging ASL (eASL) and 18F-FDG PET in a true clinical context of subjects referred for suspicion of neurodegenerative dementia. METHODS: Twenty-seven patients underwent a 20-min 18F-FDG PET/MR and simultaneously acquired eASL on a GE Signa PET/MR. Data were compared with 30 screened age- and gender-matched healthy controls. Both integral eASL and 18F-FDG datasets were analysed visually by two readers unaware of the final clinical diagnosis, either in normal/abnormal classes, or full differential diagnosis (normal, Alzheimer type dementia [AD], dementia with Lewy Bodies [LBD], frontotemporal dementia [FTD] or other). Reader confidence was assessed with a rating scale (range 1-4). Data were also analysed semiquantitatively by VOI and voxel-based analyses. RESULTS: The ground truth diagnosis for the patient group resulted in 14 patients with a neurodegenerative cognitive disorder (AD, FTD, LBD) and 13 patients with no arguments for an underlying neurodegenerative cause. Visual analysis resulted in equal specificity (0.70) for differentiating normal and abnormal cases between the two modalities, but in a higher sensitivity (0.93), confidence rating (0.64) and interobserver agreement for 18F-FDG PET compared with eASL. The same was true for assigning a specific differential diagnosis (sensitivity: and 0.39 for 18F-FDG PET and eASL, respectively). Semiquantitative analyses revealed prototypical patterns for AD and FTD, with both higher volumes of abnormality and intensity differences on 18F-FDG PET. CONCLUSION: In a direct head-to-head comparison on a simultaneous GE Signa PET/MR, 18F-FDG PET performed better compared with ASL in terms of sensitivity and reader confidence, as well as volume and intensity of abnormalities. However, using pure semiquantitative analysis, similar diagnostic accuracy between the two modalities was obtained. Therefore, ASL may still serve as complement to neuroreceptor or protein deposition PET studies when a single simultaneous investigation is warranted.


Asunto(s)
Enfermedad de Alzheimer , Fluorodesoxiglucosa F18 , Enfermedad de Alzheimer/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Estudios Prospectivos , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA