Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 123(6): 3237-3298, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36827528

RESUMEN

The synthesis and processing of most thermoplastics and thermoset polymeric materials rely on energy-inefficient and environmentally burdensome manufacturing methods. Frontal polymerization is an attractive, scalable alternative due to its exploitation of polymerization heat that is generally wasted and unutilized. The only external energy needed for frontal polymerization is an initial thermal (or photo) stimulus that locally ignites the reaction. The subsequent reaction exothermicity provides local heating; the transport of this thermal energy to neighboring monomers in either a liquid or gel-like state results in a self-perpetuating reaction zone that provides fully cured thermosets and thermoplastics. Propagation of this polymerization front continues through the unreacted monomer media until either all reactants are consumed or sufficient heat loss stalls further reaction. Several different polymerization mechanisms support frontal processes, including free-radical, cat- or anionic, amine-cure epoxides, and ring-opening metathesis polymerization. The choice of monomer, initiator/catalyst, and additives dictates how fast the polymer front traverses the reactant medium, as well as the maximum temperature achievable. Numerous applications of frontally generated materials exist, ranging from porous substrate reinforcement to fabrication of patterned composites. In this review, we examine in detail the physical and chemical phenomena that govern frontal polymerization, as well as outline the existing applications.

2.
J Am Chem Soc ; 144(22): 9853-9858, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35604847

RESUMEN

Despite the widespread use of copper catalysis for the formation of C-C bonds, debate about the mechanism persists. Reductive elimination from Cu(III) is often invoked as a key step, yet examples of its direct observation from isolable complexes remain limited to only a few examples. Here, we demonstrate that incorporation of bulky mesityl (Mes) groups into the α-positions of a phenanthrene-appended zirconacyclopentadiene, Cp2Zr(2,5-Mes2-phenanthro[9,10]C4), enables efficient oxidative transmetalation to the corresponding, formal Cu(III) metallacyclopentadiene dimer. The dimer was quantitatively converted to a structurally analogous anionic monomer [nBu4N]{Cl2Cu(2,5-Mes2-phenanthro[9,10]C4)} upon treatment with [nBu4N][Cl]. Both metallacycles undergo quantitative reductive elimination upon heating to generate phenanthrocyclobutadiene and a Cu(I) species. Due to the steric protection provided by the mesityl groups, this cyclobutadiene was isolated and thoroughly characterized to reveal antiaromaticity comparable to that of free cyclobutadiene, which imbues it with a small highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap of 1.85 eV and accessible reduced and oxidized electronic states.


Asunto(s)
Cobre , Compuestos Organometálicos , Catálisis , Cobre/química , Compuestos Organometálicos/química , Oxidación-Reducción , Circonio
3.
J Am Chem Soc ; 143(31): 12108-12119, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34318666

RESUMEN

High-valent multimetallic-oxo/oxyl species have been implicated as intermediates in oxidative catalysis involving proton-coupled electron transfer (PCET) reactions, but the reactive nature of these oxo species has hindered the development of an in-depth understanding of their mechanisms and multimetallic character. The mechanism of C-H oxidation by previously reported RuCo3O4 cubane complexes bearing a terminal RuV-oxo ligand, with significant oxyl radical character, was investigated. The rate-determining step involves H atom abstraction (HAA) from an organic substrate to generate a Ru-OH species and a carbon-centered radical. Radical intermediates are subsequently trapped by another equivalent of the terminal oxo to afford isolable radical-trapped cubane complexes. Density functional theory (DFT) reveals a barrierless radical combination step that is more favorable than an oxygen-rebound mechanism by 12.3 kcal mol-1. This HAA reactivity to generate organic products is influenced by steric congestion and the C-H bond dissociation energy of the substrate. Tuning the electronic properties of the cubane (i.e., spin density localized on terminal oxo, basicity, and redox potential) by varying the donor ability of ligands at the Co sites modulates C-H activations by the RuV-oxo fragment and enables construction of structure-activity relationships. These results reveal a mechanistic pathway for C-H activation by high-valent metal-oxo species with oxyl radical character and provide insights into cooperative effects of multimetallic centers in tuning PCET reactivity.


Asunto(s)
Cobalto/química , Complejos de Coordinación/química , Oxígeno/química , Rubidio/química , Teoría Funcional de la Densidad , Transporte de Electrón , Conformación Molecular , Protones
4.
Magn Reson Chem ; 59(12): 1208-1215, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33826170

RESUMEN

Signal amplification by reversible exchange (SABRE) boosts NMR signals of various nuclei enabling new applications spanning from magnetic resonance imaging to analytical chemistry and fundamental physics. SABRE is especially well positioned for continuous generation of enhanced magnetization on a large scale; however, several challenges need to be addressed for accomplishing this goal. Specifically, SABRE requires (i) a specialized catalyst capable of reversible H2 activation and (ii) physical transfer of the sample from the point of magnetization generation to the point of detection (e.g., a high-field or a benchtop nuclear magnetic resonance [NMR] spectrometer). Moreover, (iii) continuous parahydrogen bubbling accelerates solvent (e.g., methanol) evaporation, thereby limiting the experimental window to tens of minutes per sample. In this work, we demonstrate a strategy to rapidly generate the best-to-date precatalyst (a compound that is chemically modified in the course of the reaction to yield the catalyst) for SABRE, [Ir(IMes)(COD)Cl] (IMes = 1,3-bis-[2,4,6-trimethylphenyl]-imidazol-2-ylidene; COD = cyclooctadiene) via a highly accessible synthesis. Second, we measure hyperpolarized samples using a home-built zero-field NMR spectrometer and study the field dependence of hyperpolarization directly in the detection apparatus, eliminating the need to physically move the sample during the experiment. Finally, we prolong the measurement time and reduce evaporation by presaturating parahydrogen with the solvent vapor before bubbling into the sample. These advancements extend opportunities for exploring SABRE hyperpolarization by researchers from various fields and pave the way to producing large quantities of hyperpolarized material for long-lasting detection of SABRE-derived nuclear magnetization.


Asunto(s)
Imagen por Resonancia Magnética , Catálisis , Espectroscopía de Resonancia Magnética
5.
J Am Chem Soc ; 142(25): 11203-11218, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32456425

RESUMEN

Highly reactive catalysts for ortho-hydroarylations of alkynes have previously been reported to result from activation of CoBr2 by Grignard reagents, but the operative mechanism and identity of the active cobalt species have been undefined. A mechanistic analysis of a related system, involving hydroarylations of a (N-aryl)aryl ethanimine with diphenylacetylene, was performed using isolable reduced Co complexes. Studies of the stoichiometric reaction of Co(I) or Co(II) precursors with CyMgCl implicated catalyst initiation via a ß-H elimination/deprotonation pathway. The resulting single-component Co(-I) complex is proposed as the direct pre-catalyst. Michaelis-Menten enzyme kinetic studies provide mechanistic details regarding the catalytic dependence on substrate. The (N-aryl)aryl ethanimine substrate exhibited saturation-like behavior, whereas alkyne demonstrated a complex dependency; rate inhibition and promotion depend on the relative concentration of alkyne to imine. Activation of the aryl C-H bond occurred only in the presence of coordinated alkyne, which suggests operation of a concerted metalation-deprotonation (CMD) mechanism. Small primary isotope effects are consistent with a rate-determining C-H cleavage. Off-cycle olefin isomerization catalyzed by the same Co(-I) active species appears to be responsible for the observed Z-selectivity.


Asunto(s)
Alquinos/química , Compuestos de Bencilideno/síntesis química , Complejos de Coordinación/química , Catálisis , Cobalto/química , Cinética , Modelos Químicos
6.
ACS Macro Lett ; 13(3): 296-301, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38359364

RESUMEN

Vinyl ethers are commonly used to deactivate Grubbs catalysts and terminate ring opening metathesis polymerization (ROMP) by forming Fischer carbene species with attenuated metathesis reactivity. However, we recently demonstrated that a cyclic enol ether, 2,3-dihydrofuran (DHF), can in fact be homopolymerized or copolymerized with norbornene derivatives. 1,5-Cyclooctadiene (COD) and cyclooctene (COE) consist of an important class of ROMP monomers, and we describe here a study of their copolymerization with DHF. Addition of DHF greatly suppressed the ROMP activity of COD and COE and resulted in significant alkene isomerization of COD. Chloranil was found to be an effective additive to prevent undesired isomerization and promote copolymerization. As a result, high molecular weight COD/COE and DHF copolymers were synthesized. Hydrolysis of the enol ether main chain linkages yields polyalkenamers with alcohol and aldehyde end groups. This study encourages further exploration of the in situ formed Ru Fischer carbene species in ROMP to access degradable polymers.

7.
Adv Mater ; 36(11): e2309662, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38087908

RESUMEN

Self-healing offers promise for addressing structural failures, increasing lifespan, and improving durability in polymeric materials. Implementing self-healing in thermoset polymers faces significant manufacturing challenges, especially due to the elevated temperature requirements of thermoset processing. To introduce self-healing into structural thermosets, the self-healing system must be thermally stable and compatible with the thermoset chemistry. This article demonstrates a self-healing microcapsule-based system stable to frontal polymerization (FP), a rapid and energy-efficient manufacturing process with a self-propagating exothermic reaction (≈200 °C). A thermally latent Grubbs-type complex bearing two N-heterocyclic carbene ligands addresses limitations in conventional G2-based self-healing approaches. Under FP's elevated temperatures, the catalyst remains dormant until activated by a Cu(I) co-reagent, ensuring efficient polymerization of the dicyclopentadiene (DCPD) upon damage to the polyDCPD matrix. The two-part microcapsule system consists of one capsule containing the thermally latent Grubbs-type catalyst dissolved in the solvent, and another capsule containing a Cu(I) coagent blended with liquid DCPD monomer. Using the same chemistry for both matrix fabrication and healing results in strong interfaces as demonstrated by lap-shear tests. In an optimized system, the self-healing system restores the mechanical properties of the tough polyDCPD thermoset. Self-healing efficiencies greater than 90% via tapered double cantilever beam tests are observed.

8.
Adv Mater ; : e2402627, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652482

RESUMEN

While valued for their durability and exceptional performance, crosslinked thermosets are challenging to recycle and reuse. Here, inherent reprocessability in industrially relevant polyolefin thermosetsis unveiled. Unlike prior methods, this approach eliminates the need to introduce exchangeable functionality to regenerate the material, relying instead on preserving the activity of the metathesis catalyst employed in the curing reaction. Frontal ring-opening metathesis polymerization (FROMP) proves critical to preserving this activity. Conditions controlling catalytic viability are explored to successfully reclaim performance across multiple generations of material, thus demonstrating long-term reprocessability. This straightforward and scalable remolding strategy is poised for widespread adoption. Given the anticipated growth in polyolefin thermosets, these findings represent an important conceptual advance in the pursuit of a fully circular lifecycle for thermoset polymers.

9.
ACS Macro Lett ; 11(6): 780-784, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35638608

RESUMEN

Herein, we report the development of a photoredox-initiated frontal ring-opening metathesis polymerization (FROMP) chemical system. We found that a ruthenium-based, bis-N-heterocyclic carbene metathesis precatalyst was activated with 9-mesityl-10-phenylacridindium tetrafluoroborate, copper(II) triflate, and a 455 nm light source. This chemistry was used to initiate the FROMP of dicyclopentadiene; once initiated, the heat released from the polymerization sustained a well-controlled reaction front. Variation in copper or metathesis precatalyst loading yielded front speeds ranging from 0.15 to 0.43 mm s-1 and front temperatures ranging from 140 to 205 °C. While the glass transition temperatures of the resultant polymers are lower than those derived with Grubbs' second-generation catalyst, this chemical system provides extended pot life.


Asunto(s)
Rutenio , Catálisis , Polimerizacion , Polímeros
10.
Org Lett ; 23(4): 1495-1499, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33560852

RESUMEN

A single-component Co(-I) catalyst, [(PPh3)3Co(N2)]Li(THF)3, has been developed for olefin hydroarylations with (N-aryl)aryl imine substrates. More than 40 examples were examined under mild reaction conditions to afford the desired alkyl-arene product in good to excellent yields. Catalysis occurs in a regioselective manner to afford exclusively branched products with styrene-derived substrates or linear products for aliphatic olefins. Electron-withdrawing functional groups (e.g., -F, -CF3, and -CO2Me) were tolerated under the reaction conditions.

11.
Anal Chem ; 82(5): 2067-73, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20143838

RESUMEN

The analysis of complex mixtures presents a difficult challenge even for modern analytical techniques, and the ability to discriminate among closely similar such mixtures often remains problematic. Coffee provides a readily available archetype of such highly multicomponent systems. The use of a low-cost, sensitive colorimetric sensor array for the detection and identification of coffee aromas is reported. The color changes of the sensor array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). PCA revealed that the sensor array has exceptionally high dimensionality with 18 dimensions required to define 90% of the total variance. In quintuplicate runs of 10 commercial coffees and controls, no confusions or errors in classification by HCA were observed in 55 trials. In addition, the effects of temperature and time in the roasting of green coffee beans were readily observed and distinguishable with a resolution better than 10 degrees C and 5 min, respectively. Colorimetric sensor arrays demonstrate excellent potential for complex systems analysis in real-world applications and provide a novel method for discrimination among closely similar complex mixtures.


Asunto(s)
Café/química , Colorimetría/instrumentación , Odorantes , Análisis por Conglomerados , Colorimetría/métodos , Reproducibilidad de los Resultados
12.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA