RESUMEN
Nonsense mutations account for >10% of human genetic disorders, including cystic fibrosis, Alagille syndrome, and Duchenne muscular dystrophy. A nonsense mutation results in the expression of a truncated protein, and therapeutic strategies aim to restore full-length protein expression. Most strategies under development, including small-molecule aminoglycosides, suppressor tRNAs, or the targeted degradation of termination factors, lack mRNA target selectivity and may poorly differentiate between nonsense and normal stop codons, resulting in off-target translation errors. Here, we demonstrate that antisense oligonucleotides can stimulate readthrough of disease-causing nonsense codons, resulting in high yields of full-length protein in mammalian cellular lysate. Readthrough efficiency depends on the sequence context near the stop codon and on the precise targeting position of an oligonucleotide, whose interaction with mRNA inhibits peptide release to promote readthrough. Readthrough-inducing antisense oligonucleotides (R-ASOs) enhance the potency of non-specific readthrough agents, including aminoglycoside G418 and suppressor tRNA, enabling a path toward target-specific readthrough of nonsense mutations in CFTR, JAG1, DMD, BRCA1 and other mutant genes. Finally, through systematic chemical engineering, we identify heavily modified fully functional R-ASO variants, enabling future therapeutic development.
Asunto(s)
Codón sin Sentido , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Oligonucleótidos Antisentido , ARN Mensajero , Codón sin Sentido/genética , Oligonucleótidos Antisentido/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Distrofina/genética , Células HEK293 , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , GentamicinasRESUMEN
Termination of protein biosynthesis is an essential step of gene expression, during which a complete functional protein is released from the ribosome. Premature or inefficient termination results in truncated, nonfunctional, or toxic proteins that may cause disease. Indeed, more than 10% of human genetic diseases are caused by nonsense mutations leading to premature termination. Efficient and sensitive approaches are required to study eukaryotic termination mechanisms and to identify potential therapeutics that modulate termination. Canonical radioactivity-based termination assays are complex, report on a short peptide release, and are incompatible with high-throughput screening. Here we describe a robust and simple in vitro assay to study the kinetics of full-protein release. The assay monitors luminescence upon release of nanoluciferase from a mammalian pretermination complex. The assay can be used to record time-progress curves of protein release in a high-throughput format, making it optimal for studying release kinetics and for high-throughput screening for small molecules that modulate the efficiency of termination.
Asunto(s)
Bioensayo/métodos , Luciferasas/metabolismo , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos , Terminación de la Cadena Péptídica TraduccionalRESUMEN
During protein synthesis, a ribosome moves along the mRNA template and, using aminoacyl-tRNAs, decodes the template nucleotide triplets to assemble a protein amino acid sequence. This movement is accompanied by shifting of mRNA-tRNA complexes within the ribosome in a process called translocation. In living cells, this process proceeds in a unidirectional manner, bringing the ribosome to the 3' end of mRNA, and is catalyzed by the GTPase translation elongation factor 2 (EF-G in prokaryotes and eEF2 in eukaryotes). Interestingly, the possibility of spontaneous backward translocation has been shown in vitro for bacterial ribosomes, suggesting a potential reversibility of this reaction. However, this possibility has not yet been tested for eukaryotic ribosomes. Here, using a reconstituted mammalian translation system, we show that the eukaryotic elongation factor eEF2 catalyzes ribosomal reverse translocation at one mRNA triplet. We found that this process requires a cognate tRNA in the ribosomal E-site and cannot occur spontaneously without eEF2. The efficiency of this reaction depended on the concentrations of eEF2 and cognate tRNAs and increased in the presence of nonhydrolyzable GTP analogues. Of note, ADP-ribosylation of eEF2 domain IV blocked reverse translocation, suggesting a crucial role of interactions of this domain with the ribosome for the catalysis of the reaction. In summary, our findings indicate that eEF2 is able to induce ribosomal translocation in forward and backward directions, highlighting the universal mechanism of tRNA-mRNA movements within the ribosome.
Asunto(s)
Extensión de la Cadena Peptídica de Translación/fisiología , Factor 2 de Elongación Peptídica/metabolismo , Ribosomas/metabolismo , Animales , Escherichia coli/metabolismo , Eucariontes/metabolismo , Células Eucariotas/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Factor 2 de Elongación Peptídica/fisiología , Factor G de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Conejos , Proteínas RecombinantesRESUMEN
Tropomyosin (Tpm) is an α-helical coiled-coil actin-binding protein that plays a key role in the Ca2+-regulated contraction of striated muscles. Two Tpm isoforms, α (Tpm 1.1) and ß (Tpm 2.2), are expressed in fast skeletal muscles. These Tpm isoforms can form either αα and ßß homodimers, or αß heterodimers. However, only αα-Tpm and αß-Tpm dimers are usually present in most of fast skeletal muscles, because ßß-homodimers are relatively unstable and cannot exist under physiologic conditions. Nevertheless, the most of previous studies of myopathy-causing mutations in the Tpm ß-chains were performed on the ßß-homodimers. In the present work, we applied different methods to investigate the effects of two myopathic mutations in the ß-chain, Q147P and K49del (i.e. deletion of Lys49), on structural and functional properties of Tpm αß-heterodimers and to compare them with the properties of ßß-homodimers carrying these mutations in both ß-chains. The results show that the properties of αß-Tpm heterodimers with these mutations in the ß-chain differ significantly from the properties of ßß-homodimers with the same substitutions in both ß-chains. This indicates that the αß-heterodimer is a more appropriate model for studying the effects of myopathic mutations in the ß-chain of Tpm than the ßß-homodimer which virtually does not exist in human skeletal muscles.
Asunto(s)
Mutación , Tropomiosina/genética , Actinas/metabolismo , Animales , Humanos , Enfermedades Musculares/genética , Multimerización de Proteína , Desplegamiento Proteico , Conejos , Tropomiosina/química , Tropomiosina/metabolismoRESUMEN
The human DEAD-box RNA-helicase DDX19 functions in mRNA export through the nuclear pore complex. The yeast homolog of this protein, Dbp5, has been reported to participate in translation termination. Using a reconstituted mammalian in vitro translation system, we show that the human protein DDX19 is also important for translation termination. It is associated with the fraction of translating ribosomes. We show that DDX19 interacts with pre-termination complexes (preTCs) in a nucleotide-dependent manner. Furthermore, DDX19 increases the efficiency of termination complex (TC) formation and the peptide release in the presence of eukaryotic release factors. Using the eRF1(AGQ) mutant protein or a non-hydrolysable analog of GTP to inhibit subsequent peptidyl-tRNA hydrolysis, we reveal that the activation of translation termination by DDX19 occurs during the stop codon recognition. This activation is a result of DDX19 binding to preTC and a concomitant stabilization of terminating ribosomes. Moreover, we show that DDX19 stabilizes ribosome complexes with translation elongation factors eEF1 and eEF2. Taken together, our findings reveal that the human RNA helicase DDX19 actively participates in protein biosynthesis.
Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Extensión de la Cadena Peptídica de Translación/fisiología , Terminación de la Cadena Péptídica Traduccional/fisiología , Ribosomas/metabolismo , Codón de Terminación , ARN Helicasas DEAD-box/genética , Células HEK293 , Humanos , Mutación , Proteínas de Transporte Nucleocitoplasmático/genética , Factor 1 de Elongación Peptídica/metabolismo , Factor 2 de Elongación Peptídica/metabolismo , Polirribosomas/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Poly(A)-binding protein (PABP) is a major component of the messenger RNA-protein complex. PABP is able to bind the poly(A) tail of mRNA, as well as translation initiation factor 4G and eukaryotic release factor 3a (eRF3a). PABP has been found to stimulate translation initiation and to inhibit nonsense-mediated mRNA decay. Using a reconstituted mammalian in vitro translation system, we show that PABP directly stimulates translation termination. PABP increases the efficiency of translation termination by recruitment of eRF3a and eRF1 to the ribosome. PABP's function in translation termination depends on its C-terminal domain and its interaction with the N-terminus of eRF3a. Interestingly, we discover that full-length eRF3a exerts a different mode of function compared to its truncated form eRF3c, which lacks the N-terminal domain. Pre-association of eRF3a, but not of eRF3c, with pre-termination complexes (preTCs) significantly increases the efficiency of peptidyl-tRNA hydrolysis by eRF1. This implicates new, additional interactions of full-length eRF3a with the ribosomal preTC. Based on our findings, we suggest that PABP enhances the productive binding of the eRF1-eRF3 complex to the ribosome, via interactions with the N-terminal domain of eRF3a which itself has an active role in translation termination.
Asunto(s)
Codón de Terminación/metabolismo , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Humanos , Hidrólisis , Modelos Biológicos , Unión Proteica , Aminoacil-ARN de TransferenciaRESUMEN
Stabilization of the ribosomal complexes plays an important role in translational control. Mechanisms of ribosome stabilization have been studied in detail for initiation and elongation of eukaryotic translation, but almost nothing is known about stabilization of eukaryotic termination ribosomal complexes. Here, we present one of the mechanisms of fine-tuning of the translation termination process in eukaryotes. We show that certain deacylated tRNAs, remaining in the E site of the ribosome at the end of the elongation cycle, increase the stability of the termination and posttermination complexes. Moreover, only the part of eRF1 recognizing the stop codon is stabilized in the A site of the ribosome, and the stabilization is not dependent on the hydrolysis of peptidyl-tRNA. The determinants, defining this property of the tRNA, reside in the acceptor stem. It was demonstrated by site-directed mutagenesis of tRNA(Val) and construction of a mini-helix structure identical to the acceptor stem of tRNA. The mechanism of this stabilization is different from the fixation of the unrotated state of the ribosome by CCA end of tRNA or by cycloheximide in the E site. Our data allow to reveal the possible functions of the isodecoder tRNAs in eukaryotes.
Asunto(s)
Terminación de la Cadena Péptídica Traduccional , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Acilación , Animales , Codón de Terminación , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Estabilidad Proteica , Estabilidad del ARN , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/genética , ARN de Transferencia de Valina/metabolismo , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMEN
Toxic dipeptide-repeat (DPR) proteins are produced from expanded G4C2 repeats in the C9ORF72 gene, the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Two DPR proteins, poly-PR and poly-GR, repress cellular translation but the molecular mechanism remains unknown. Here we show that poly-PR and poly-GR of ≥20 repeats inhibit the ribosome's peptidyl-transferase activity at nanomolar concentrations, comparable to specific translation inhibitors. High-resolution cryogenic electron microscopy (cryo-EM) reveals that poly-PR and poly-GR block the polypeptide tunnel of the ribosome, extending into the peptidyl-transferase center (PTC). Consistent with these findings, the macrolide erythromycin, which binds in the tunnel, competes with poly-PR and restores peptidyl-transferase activity. Our results demonstrate that strong and specific binding of poly-PR and poly-GR in the ribosomal tunnel blocks translation, revealing the structural basis of their toxicity in C9ORF72-ALS/FTD.
Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Microscopía por Crioelectrón , Dipéptidos/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Proteínas/genética , Proteínas/metabolismo , Ribosomas/metabolismo , TransferasasRESUMEN
We applied differential scanning calorimetry (DSC) to investigate the structural properties of three isoforms of tropomyosin (Tpm), α, ß, and γ, expressed from different genes in human skeletal muscles. We compared specific features of the thermal unfolding of αα, ßß, and γγ Tpm homodimers, as well as of αß and Î³ß Tpm heterodimers. The results show that the thermal stability of γγ homodimer is much higher than that of αα homodimer which, in turn, is much more thermostable than the ßß homodimer. The stability of the Î³ß Tpm heterodimer is much lower than that of the γγ homodimer, and its thermal unfolding is quite different from that for γγ and ßß homodimers, whereas the unfolding of the αß heterodimer is roughly similar to that of the αα homodimer.
Asunto(s)
Músculo Esquelético/metabolismo , Tropomiosina/metabolismo , Rastreo Diferencial de Calorimetría , Dimerización , Humanos , Mutagénesis Sitio-Dirigida , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Desplegamiento Proteico , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Temperatura , Tropomiosina/química , Tropomiosina/genéticaRESUMEN
For protein synthesis that occurs locally in dendrites, the translational control mechanisms are much more important for neuronal functioning than the transcription levels. Here, we show that uORFs (upstream open reading frames) in the 5' untranslated region (5'UTR) play a critical role in regulation of the translation of protein kinase Mζ (PKMζ). Elimination of these uORFs activates translation of the reporter protein in vitro and in primary cultures of rat hippocampal neurons. Using cell-free translation systems, we demonstrate that translational initiation complexes are formed only on uORFs. Further, we address the mechanism of translational repression of PKMζ translation, by uORFs. We observed an increase in translation of the reporter protein under the control of PKMζ leader in neuronal culture during non-specific activation by picrotoxin. We also show that such a mechanism is similar to the mechanism seen in cell stress, as application of sodium arsenite to neuron cultures induced translation of mRNA carrying PKMζ 5'UTR similarly to picrotoxin activation. Therefore, we suppose that phosphorylation of eIF2a, like in cell stress, is a main regulator of PKMζ translation. Altogether, our findings considerably extend our understanding of the role of uORF in regulation of PKMζ translation in activated neurons, important at early stages of LTP.