RESUMEN
Clozapine (CLZ) is extensively used for treatment-resistant schizophrenia (TRS) with caution to avoid serious adverse events such as agranulocytosis and drug-drug interactions (DDIs). In the current report, we present a case of a 35-year-old male non-smoking TRS patient whose steady-state plasma trough concentrations (Ctrough ) of CLZ and its active metabolite, N-desmethylclozapine (NDMC), were significantly increased after initiating oral administration of lemborexant (LEM), a dual orexin receptor antagonist, for the treatment of insomnia. The patient experienced oversedation with sleepiness and fatigue while maintaining high levels of Ctrough of CLZ. The increased concentrations of CLZ returned to normal ranges after the discontinuation of LEM dosing, implying a pharmacokinetic DDI between CLZ and LEM. To gain insight into possible mechanisms, we performed in vitro assays of CYP1A2- and CYP3A4-mediated CLZ metabolism by measuring the formations of NDMC and clozapine N-oxide (CNO). In accordance with previous studies, the incubation of CLZ with each enzyme resulted in the production of both metabolites. LEM had only a weak inhibitory effect on CYP1A2- and CYP3A4-mediated CLZ metabolism. However, the preincubation of LEM with CYP3A4 in the presence of NADPH showed a significant enhancement of inhibitory effects on CLZ metabolism with IC50 values for the formations of CNO and NDMC of 2.8 µM and 4.1 µM, respectively, suggesting that LEM exerts as a potent time-dependent inhibitor for CYP3A4. Taken together, the results of the current study indicate that co-medication of CLZ with LEM may lead to increase in exposure to CLZ and risks of CLZ-related adverse events.
Asunto(s)
Antipsicóticos , Clozapina , Masculino , Humanos , Adulto , Clozapina/efectos adversos , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/metabolismo , Antipsicóticos/efectos adversos , Interacciones FarmacológicasRESUMEN
Madangamines are marine natural products isolated from Xestospongia ingens, and madangamine A-E with a different D-ring structure have been reported. We have reported that madangamine A has strong anti-proliferative activity against various human cancer cell lines. In this study, to clarify the anti-proliferative activity of madangamine A, we searched for molecular target of the madangamine A in human cells. Treatment with madangamine A increased the levels of LC3-II and p62, autophagy-related proteins, concomitant with growth inhibition. Moreover, madangamine A resulted in lysosome enlargement and increase in lysosomal pH, which are same phenomena observed in chloroquine-treated cells. These results suggest that madangamine A is a novel lysosome inhibitor, and the anti-proliferative activity of madangamine A is due to the inhibition of lysosome function.
Asunto(s)
Autofagia/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Poríferos/química , Animales , Productos Biológicos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/química , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Estructura Molecular , Regulación hacia ArribaRESUMEN
A stereodivergent strategy for the synthesis of skipped dienes is developed. The method consists of hydroboration of allenes and Migita-Kosugi-Stille coupling, which allows for access to all four possible stereoisomers of the skipped dienes. The hydroboration is especially useful for providing both E-allylic and Z-allylic alcohols from the same allene by simply changing the organoborane reagent. The strategy was successfully applied to a unified total synthesis of the madangamine alkaloids via a common ABCE-tetracyclic intermediate with a (Z,Z)-skipped diene. The late-stage variation of the D-ring enabled the supply of synthetic madangamines A, C, and E for the first time.
Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Compuestos Heterocíclicos de 4 o más Anillos/química , Estructura Molecular , EstereoisomerismoRESUMEN
We describe the development of the practical manufacturing of Ensitrelvir, which was discovered as a SARS-CoV-2 antiviral candidate. Scalable synthetic methods of indazole, 1,2,4-triazole and 1,3,5-triazinone structures were established, and convergent couplings of these fragments enabled the development of a concise and efficient scale-up process to Ensitrelvir. In this process, introducing a meta-cresolyl moiety successfully enhanced the stability of intermediates. Compared to the initial route at the early research and development stage, the overall yield of the longest linear sequence (6 steps) was improved by approximately 7-fold. Furthermore, 9 out of the 12 isolated intermediates were crystallized directly from each reaction mixture without any extractive workup (direct isolation). This led to an efficient and environmentally friendly manufacturing process that minimizes waste of organic solvents, reagents, and processing time. This practical process for manufacturing Ensitrelvir should contribute to protection against COVID-19.
RESUMEN
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths and threatens public health and safety. Despite the rapid global spread of COVID-19 vaccines, effective oral antiviral drugs are urgently needed. Here, we describe the discovery of S-217622, the first oral noncovalent, nonpeptidic SARS-CoV-2 3CL protease inhibitor clinical candidate. S-217622 was discovered via virtual screening followed by biological screening of an in-house compound library, and optimization of the hit compound using a structure-based drug design strategy. S-217622 exhibited antiviral activity in vitro against current outbreaking SARS-CoV-2 variants and showed favorable pharmacokinetic profiles in vivo for once-daily oral dosing. Furthermore, S-217622 dose-dependently inhibited intrapulmonary replication of SARS-CoV-2 in mice, indicating that this novel noncovalent inhibitor could be a potential oral agent for treating COVID-19.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Vacunas contra la COVID-19 , Proteasas 3C de Coronavirus , Humanos , Ratones , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéuticoRESUMEN
Full details of a stereodivergent hydroboration of allenes are reported. While hydroboration of an allene with 9-BBN provided a thermodynamically stable (E)-allylic alcohol after oxidative work-up, the reaction of an identical allene with HB(Sia)2 (disiamylborane) formed a (Z)-allylic alcohol as the kinetic product. The developed conditions allowed for the synthesis of trisubstituted olefins in a highly stereoselective fashion, which is known to be challenging. The method was also applied to the stereodivergent synthesis of structural motifs such as skipped dienes and allylbenzenes, which are often embedded in biologically active natural products.
RESUMEN
A general synthetic route toward a diazatricyclic core common to the madangamine family is described. Ring-closing metathesis and palladium-catalyzed cycloisomerization provided the cis-fused diazadecalin structure, accompanied by formation of the N-Boc-enamine, which was utilized as an N-acyliminium ion equivalent. Direct cyclization from the N-Boc-enamine was achieved through the in situ formation of an N,O-acetal.