Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 234(1): 311-318, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35023179

RESUMEN

Plants are known to have the capacity to take up and utilise amino acids for growth. The significance of this uptake, however, remains elusive, partly due to methodological challenges and biological implications associated with acquiring and interpreting data. This study compared bulk stable isotope analysis and compound-specific liquid chromatography-mass spectrometry, two established methods for determining amino acid uptake. Root amino acid uptake was assayed using U-13 C5 -15 N2 -l-glutamine and axenically grown Arabidopsis thaliana. After 15-120 min of exposure, the content of intact glutamine measured in the roots was constant, whilst the 15 N and 13 C content increased over time, resulting in very different estimated uptake rates. The 13 C : 15 N ratio in roots declined with time, suggesting a loss of glutamine carbon of up to 15% within 120 min. The results presented indicate that, regardless of method used, time is a crucial factor when determining plant amino acid uptake. Due to post-uptake metabolism, compound-specific methods should primarily be used in experiments with a time frame of minutes rather than hours or days. Post-uptake metabolism in plants may account for significant loss of carbon, suggesting that it is not just pre-uptake metabolism by microbes that accounts for the 15 N-13 C mismatch reported in ecological studies, but also post-uptake metabolism in the plant.


Asunto(s)
Aminoácidos , Arabidopsis , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Isótopos de Carbono/metabolismo , Glutamina/metabolismo , Nitrógeno/metabolismo , Isótopos de Nitrógeno/metabolismo , Raíces de Plantas/metabolismo
2.
Plant Cell Environ ; 40(3): 413-423, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27943312

RESUMEN

Although organic nitrogen (N) compounds are ubiquitous in soil solutions, their potential role in plant N nutrition has been questioned. We performed a range of experiments on Arabidopsis thaliana genetically modified to enhance or reduce root uptake of amino acids. Plants lacking expression of the Lysine Histidine Transporter 1 (LHT1) displayed significantly lower contents of 13 C and 15 N label and of U-13 C5 ,15 N2 L-glutamine, as determined by liquid chromatography-mass spectrometry when growing in pots and supplied with dually labelled L-glutamine compared to wild type plants and LHT1-overexpressing plants. Slopes of regressions between accumulation of 13 C-labelled carbon and 15 N-labelled N were higher for LHT1-overexpressing plants than wild type plants, while plants lacking expression of LHT1 did not display a significant regression between the two isotopes. Uptake of labelled organic N from soil tallied with that of labelled ammonium for wild type plants and LHT1-overexpressing plants but was significantly lower for plants lacking expression of LHT1. When grown on agricultural soil plants lacking expression of LHT1 had the lowest, and plants overexpressing LHT1 the highest C/N ratios and natural δ15 N abundance suggesting their dependence on different N pools. Our data show that LHT1 expression is crucial for plant uptake of organic N from soil.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/genética , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Productos Agrícolas/metabolismo , Mutación/genética , Micorrizas/metabolismo , Nitrógeno/metabolismo , Suelo/química , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Compuestos de Amonio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Isótopos de Carbono , Cromatografía Liquida , Difusión , Genotipo , Glutamina/metabolismo , Espectrometría de Masas , Isótopos de Nitrógeno , Raíces de Plantas/metabolismo , Factores de Tiempo
3.
New Phytol ; 191(2): 459-467, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21453345

RESUMEN

Recent studies of Arabidopsis have identified several transporters as being important for amino acid uptake. We used Arabidopsis plants with altered expression of lysine histidine transporter 1 (LHT1), amino acid permease 1 (AAP1) and amino acid permease 5 (AAP5) with the aim of disentangling the roles of each transporter in the uptake of different amino acids at naturally occurring concentrations (2-50 µM). LHT1 mutants displayed reduced uptake rates of L-Gln, L-Ala, L-Glu and L-Asp but not of L-Arg or L-Lys, while AAP5 mutants were affected in the uptake of L-Arg and L-Lys only. Double mutants (lht1aap5) exhibited reduced uptake of all tested amino acids. In the concentration range tested, AAP1 mutants did not display altered uptake rates for any of the studied amino acids. Expression analysis of amino acid transporter genes with important root functions revealed no major differences in the individual mutants other than for genes targeted for mutation. We conclude that LHT1 and AAP5, but not AAP1, are crucial for amino acid uptake at concentrations typically found in soils. LHT1 and AAP5 displayed complementary affinity spectra, and no redundancy with respect to gene expression was found between the two transporters, suggesting these two transporters have separate roles in amino acid uptake.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/análisis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Expresión Génica , Cinética , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
4.
Tree Physiol ; 41(8): 1479-1496, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-33631788

RESUMEN

The contribution of amino acids (AAs) to soil nitrogen (N) fluxes is higher than previously thought. The fact that AA uptake is pivotal for N nutrition in boreal ecosystems highlights plant AA transporters as key components of the N cycle. At the same time, very little is known about AA transport and respective transporters in trees. Tree genomes may contain 13 or more genes encoding the lysine histidine transporter (LHT) family proteins, and this complicates the study of their significance for tree N-use efficiency. With the strategy of obtaining a tool to study N-use efficiency, our aim was to identify and characterize a relevant AA transporter in hybrid aspen (Populus tremula L. x tremuloides Michx.). We identified PtrLHT1.2, the closest homolog of Arabidopsis thaliana (L.) Heynh AtLHT1, which is expressed in leaves, stems and roots. Complementation of a yeast AA uptake mutant verified the function of PtrLHT1.2 as an AA transporter. Furthermore, PtrLHT1.2 was able to fully complement the phenotypes of the Arabidopsis AA uptake mutant lht1 aap5, including early leaf senescence-like phenotype, reduced growth, decreased plant N levels and reduced root AA uptake. Amino acid uptake studies finally showed that PtrLHT1.2 is a high affinity transporter for neutral and acidic AAs. Thus, we identified a functional AtLHT1 homolog in hybrid aspen, which harbors the potential to enhance overall plant N levels and hence increase biomass production. This finding provides a valuable tool for N nutrition studies in trees and opens new avenues to optimizing tree N-use efficiency.


Asunto(s)
Arabidopsis , Populus , Sistemas de Transporte de Aminoácidos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Ecosistema , Nitrógeno/metabolismo , Populus/genética , Populus/metabolismo
5.
New Phytol ; 180(3): 620-630, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18681934

RESUMEN

* Specific transporters mediate uptake of amino acids by plant roots. Earlier studies have indicated that the lysine histidine transporter 1 and amino acid permease 1 participate in this process, but although plant roots have been shown to absorb cationic amino acids with high affinity, neither of these transporters seems to mediate transport of L-arginine (L-Arg) or L-lysine (L-Lys). * Here, a collection of T-DNA knockout mutants were screened for alterations in Arabidopsis root uptake rates of L-Arg and it was found that only the AAP5 mutant displayed clear phenotypic divergence on high concentrations of L-Arg. A second screen using low concentrations of (15)N-labelled L-Arg in the growth media also identified AAP5 as being involved in L-Arg acquisition. * Momentaneous root uptake of basic amino acids was strongly affected in AAP5 mutant lines, but their uptake of other types of amino acids was only marginally affected. Comparisons of the root uptake characteristics of AAP5 and LHT1 mutants corroborated the hypothesis that the two transporters have distinct affinity spectra in planta. * Root uptake of all tested amino acids, except L-aspartic acid (L-Asp), was significantly affected in double AAP5*LHT1 mutants, suggesting that these two transporters account for a major proportion of roots' uptake of amino acids at low concentrations.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Arginina/metabolismo , Transporte Biológico/genética , Expresión Génica , Glutamina , Mutagénesis Insercional , Nitratos/metabolismo
6.
New Phytol ; 179(4): 1058-1069, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18627491

RESUMEN

Various amino acids, including both L- and D-enantiomers, may be present in soils, and recent studies have indicated that plants may access such nitrogen (N) forms. Here, the capacity of Arabidopsis to utilize different L- and D-amino acids is investigated and the constraints on this process are explored. Mutants defective in the lysine histidine transporter 1 (LHT1) and transgenic plants overexpressing LHT1 as well as plants expressing D-amino acid-metabolizing enzymes, were used in studies of uptake and growth on various N forms. Arabidopsis absorbed all tested N-forms, but D-enantiomers at lower rates than L-forms. Several L- but no D-forms were effective as N sources. Plants deficient in LHT1 displayed strong growth reductions and plants overexpressing LHT1 showed strong growth enhancement when N was supplied as amino acids, in particular when these were supplied at low concentrations. Several D- amino acids inhibited growth of wild-type plants, while transgenic Arabidopsis-expressing genes encoding D-amino acid-metabolizing enzymes could efficiently utilize such compounds for growth. These results suggest that several amino acids, and in particular L-Gln and L-Asn, promote growth of Arabidopsis, and increased expression of specific amino acid transporters enhances growth on amino acids. The efficiency by which transgenic plants exploit D-amino acids illustrates how plants can be engineered to utilize specific N sources otherwise inaccessible to them.


Asunto(s)
Aminoácidos/metabolismo , Arabidopsis/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Aminoácidos/química , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Escherichia coli/genética , Proteínas Fúngicas/genética , Nitrógeno/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
8.
PLoS One ; 12(8): e0181785, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28837647

RESUMEN

Somatic embryogenesis is an in vitro system employed for plant propagation and the study of embryo development. Nitrogen is essential for plant growth and development and, hence, the production of healthy embryos during somatic embryogenesis. Glutamine has been shown to increase plant biomass in many in vitro applications, including somatic embryogenesis. However, several aspects of nitrogen nutrition during somatic embryogenesis remain unclear. Therefore, we investigated the uptake and assimilation of nitrogen in Norway spruce pro-embryogenic masses to elucidate some of these aspects. In our study, addition of glutamine had a more positive effect on growth than inorganic nitrogen. The nitrogen uptake appeared to be regulated, with a strong preference for glutamine; 67% of the assimilated nitrogen in the free amino acid pool originated from glutamine-nitrogen. Glutamine addition also relieved the apparently limited metabolism (as evidenced by the low concentration of free amino acids) of pro-embryogenic masses grown on inorganic nitrogen only. The unusually high alanine concentration in the presence of glutamine, suggests that alanine biosynthesis was involved in alleviating these constraints. These findings inspire further studies of nitrogen nutrition during the somatic embryogenesis process; identifying the mechanism(s) that govern glutamine enhancement of pro-embryogenic masses growth is especially important in this regard.


Asunto(s)
Glutamina/metabolismo , Nitrógeno/metabolismo , Picea/metabolismo , Semillas/metabolismo , Aminoácidos/metabolismo , Amoníaco/metabolismo , Biomasa , Línea Celular , Picea/embriología , Semillas/crecimiento & desarrollo
9.
PLoS One ; 6(4): e19211, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21544211

RESUMEN

Nitrogen (N) availability is a strong determinant of plant biomass partitioning, but the role of different N sources in this process is unknown. Plants inhabiting low productivity ecosystems typically partition a large share of total biomass to belowground structures. In these systems, organic N may often dominate plant available N. With increasing productivity, plant biomass partitioning shifts to aboveground structures, along with a shift in available N to inorganic forms of N. We tested the hypothesis that the form of N taken up by plants is an important determinant of plant biomass partitioning by cultivating Arabidopsis thaliana on different N source mixtures. Plants grown on different N mixtures were similar in size, but those supplied with organic N displayed a significantly greater root fraction. ¹5N labelling suggested that, in this case, a larger share of absorbed organic N was retained in roots and split-root experiments suggested this may depend on a direct incorporation of absorbed amino acid N into roots. These results suggest the form of N acquired affects plant biomass partitioning and adds new information on the interaction between N and biomass partitioning in plants.


Asunto(s)
Biomasa , Nitrógeno/metabolismo , Desarrollo de la Planta , Plantas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo
10.
Plant Physiol ; 143(4): 1853-60, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17293438

RESUMEN

Plant nitrogen (N) uptake is a key process in the global N cycle and is usually considered a "bottleneck" for biomass production in land ecosystems. Earlier, mineral N was considered the only form available to plants. Recent studies have questioned this dogma and shown that plants may access organic N sources such as amino acids. The actual mechanism enabling plants to access amino acid N is still unknown. However, a recent study suggested the Lysine Histidine Transporter 1 (LHT1) to be involved in root amino acid uptake. In this study, we isolated mutants defective in root amino acid uptake by screening Arabidopsis (Arabidopsis thaliana) seeds from ethyl methanesulfonate-treated plants and seeds from amino acid transporter T-DNA knockout mutants for resistance against the toxic D-enantiomer of alanine (Ala). Both ethyl methanesulfonate and T-DNA knockout plants identified as D-Ala resistant were found to be mutated in the LHT1 gene. LHT1 mutants displayed impaired capacity for uptake of a range of amino acids from solutions, displayed impaired growth when N was supplied in organic forms, and acquired substantially lower amounts of amino acids than wild-type plants from solid growth media. LHT1 mutants grown on mineral N did not display a phenotype until at the stage of flowering, when premature senescence of old leaf pairs occurred, suggesting that LHT1 may fulfill an important function at this developmental stage. Based on the broad and unbiased screening of mutants resistant to D-Ala, we suggest that LHT1 is an important mediator of root uptake of amino acids. This provides a molecular background for plant acquisition of organic N from the soil.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mutación , Sistemas de Transporte de Aminoácidos Básicos/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Cartilla de ADN , ADN Bacteriano/genética , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA