Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 584(7821): 479-483, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32788728

RESUMEN

Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipin transporter6-9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10-12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery.


Asunto(s)
Membrana Celular/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/patogenicidad , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Amidohidrolasas/química , Amidohidrolasas/metabolismo , Secuencias de Aminoácidos , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Estabilidad de Enzimas , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Genes Esenciales , Hidrolasas/química , Hidrolasas/metabolismo , Lípido A/química , Lípido A/metabolismo , Lipopolisacáridos/biosíntesis , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Periplasma/química , Periplasma/metabolismo , Unión Proteica , Virulencia
2.
Cell ; 134(3): 461-73, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18692469

RESUMEN

Quorum sensing, a process of bacterial cell-cell communication, relies on production, detection, and response to autoinducer signaling molecules. LuxN, a nine-transmembrane domain protein from Vibrio harveyi, is the founding example of membrane-bound receptors for acyl-homoserine lactone (AHL) autoinducers. We used mutagenesis and suppressor analyses to identify the AHL-binding domain of LuxN and discovered LuxN mutants that confer both decreased and increased AHL sensitivity. Our analysis of dose-response curves of multiple LuxN mutants pins these inverse phenotypes on quantifiable opposing shifts in the free-energy bias of LuxN for occupying its kinase and phosphatase states. To understand receptor activation and to characterize the pathway signaling parameters, we exploited a strong LuxN antagonist, one of fifteen small-molecule antagonists we identified. We find that quorum-sensing-mediated communication can be manipulated positively and negatively to control bacterial behavior and, more broadly, that signaling parameters can be deduced from in vivo data.


Asunto(s)
4-Butirolactona/análogos & derivados , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Percepción de Quorum , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Vibrio/química , Vibrio/metabolismo , 4-Butirolactona/metabolismo , Acil-Butirolactonas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
3.
Mol Cell ; 42(2): 199-209, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21504831

RESUMEN

Quorum-sensing bacteria communicate via small molecules called autoinducers to coordinate collective behaviors. Because quorum sensing controls virulence factor expression in many clinically relevant pathogens, membrane-permeable quorum sensing antagonists that prevent population-wide expression of virulence genes offer a potential route to novel antibacterial therapeutics. Here, we report a strategy for inhibiting quorum-sensing receptors of the widespread LuxR family. Structure-function studies with natural and synthetic ligands demonstrate that the dimeric LuxR-type transcription factor CviR from Chromobacterium violaceum is potently antagonized by molecules that bind in place of the native acylated homoserine lactone autoinducer, provided that they stabilize a closed conformation. In such conformations, each of the two DNA-binding domains interacts with the ligand-binding domain of the opposing monomer. Consequently, the DNA-binding helices are held apart by ∼60 Å, twice the ∼30 Å separation required for operator binding. This approach may represent a general strategy for the inhibition of multidomain proteins.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Chromobacterium/efectos de los fármacos , Lactonas/farmacología , Percepción de Quorum/efectos de los fármacos , Proteínas Represoras/antagonistas & inhibidores , Transactivadores/antagonistas & inhibidores , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Antibacterianos/química , Sitios de Unión , Chromobacterium/genética , Chromobacterium/crecimiento & desarrollo , Chromobacterium/metabolismo , Chromobacterium/patogenicidad , Cristalografía por Rayos X , ADN/metabolismo , Relación Dosis-Respuesta a Droga , Lactonas/química , Lactonas/metabolismo , Ligandos , Modelos Moleculares , Estructura Molecular , Mutación , Conformación Proteica , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Relación Estructura-Actividad , Transactivadores/química , Transactivadores/genética , Transactivadores/metabolismo , Virulencia
4.
Mol Cell ; 35(2): 143-53, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19647512

RESUMEN

Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene expression changes. Here, we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Caenorhabditis elegans/microbiología , Chromobacterium/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Transactivadores/antagonistas & inhibidores , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Chromobacterium/patogenicidad , Chromobacterium/fisiología , Escherichia coli/genética , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana
5.
J Infect Dis ; 209(10): 1533-41, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24280367

RESUMEN

BACKGROUND: Detailed knowledge on protein repertoire of a pathogen during host infection is needed for both developing a better understanding of the pathogenesis and defining potential therapeutic targets. Such data, however, have been missing for Staphylococcus aureus, a major human pathogen. METHODS: We determined the surface proteome of methicillin-resistant S. aureus (MRSA) clone usa300 derived directly from murine systemic infectiON. RESULTS: The majority of the in vivo-expressed surface-associated proteins were lipoproteins involved in nutrient acquisition, especially uptake of metal ions. Enzyme-linked immunosorbent assay (ELISA) of convalescent human serum samples revealed that proteins that were highly produced during murine experimental infection were also produced during natural human infection. We found that among the 7 highly abundant lipoproteins only MntC, which is the manganese-binding protein of the MntABC system, was essential for MRSA virulence during murine systemic infection. Moreover, we show that MntA and MntB are equally important for MRSA virulence. CONCLUSIONS: Besides providing experimental evidence that MntABC might be a potential therapeutic target for the development of antibiotics, our in vivo proteomics data will serve as a valuable basis for defining potential antigen combinations for multicomponent vaccines.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/metabolismo , Proteómica , Animales , Proteínas Bacterianas/genética , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Riñón/microbiología , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Ratones , Suero/inmunología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/prevención & control , Vacunas Estafilocócicas/inmunología , Virulencia
6.
Microbiol Mol Biol Rev ; 68(2): 263-79, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15187184

RESUMEN

The Reg regulon from Rhodobacter capsulatus and Rhodobacter sphaeroides encodes proteins involved in numerous energy-generating and energy-utilizing processes such as photosynthesis, carbon fixation, nitrogen fixation, hydrogen utilization, aerobic and anaerobic respiration, denitrification, electron transport, and aerotaxis. The redox signal that is detected by the membrane-bound sensor kinase, RegB, appears to originate from the aerobic respiratory chain, given that mutations in cytochrome c oxidase result in constitutive RegB autophosphorylation. Regulation of RegB autophosphorylation also involves a redox-active cysteine that is present in the cytosolic region of RegB. Both phosphorylated and unphosphorylated forms of the cognate response regulator RegA are capable of activating or repressing a variety of genes in the regulon. Highly conserved homologues of RegB and RegA have been found in a wide number of photosynthetic and nonphotosynthetic bacteria, with evidence suggesting that RegB/RegA plays a fundamental role in the transcription of redox-regulated genes in many bacterial species.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas Quinasas/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Modelos Biológicos , Datos de Secuencia Molecular , Oxidación-Reducción , Fosforilación , Proteínas Quinasas/química , Estructura Terciaria de Proteína , Regulón , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Homología de Secuencia de Aminoácido
7.
Methods Enzymol ; 422: 171-83, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17628139

RESUMEN

Two-component signal-transduction systems, composed of a histidine-sensor kinase and a DNA-binding response regulator, allow bacteria to detect environmental changes and adjust cellular physiology to live more efficiently in a broad distribution of niches. Although many two-component signal-transduction systems are known, a limited number of signals that stimulate these systems have been discovered. This chapter describes the purification and characterization of the predominant two-component signal-transduction system utilized by Rhodobacter capsulatus, a nonsulfur purple photosynthetic bacterium. Specifically, we explain the overexpression, detergent solubilization, and purification of the full-length membrane-spanning histidine-sensor kinase RegB. We also provide a method to measure autophosphorylation of RegB and discern the effect of its signal molecule, ubiquinone, on autophosphorylation levels. In addition we describe the overexpression and purification of the cognate response regulator RegA and a technique used to visualize the phosphotransfer reaction from RegB to RegA.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas Quinasas/fisiología , Rhodobacter capsulatus/fisiología , Transactivadores/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Cartilla de ADN , Regulación Bacteriana de la Expresión Génica , Fosforilación , Reacción en Cadena de la Polimerasa , Proteínas Quinasas/genética , Proteínas Quinasas/aislamiento & purificación , Proteínas Quinasas/metabolismo , Rhodobacter capsulatus/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Transactivadores/genética , Transactivadores/aislamiento & purificación , Transactivadores/metabolismo
8.
Structure ; 23(4): 713-23, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25752540

RESUMEN

Bacterial ATP-binding cassette (ABC) importers play critical roles in nutrient acquisition and are potential antibacterial targets. However, structural bases for their inhibition are poorly defined. These pathways typically rely on substrate binding proteins (SBPs), which are essential for substrate recognition, delivery, and transporter function. We report the crystal structure of a Staphylococcus aureus SBP for Mn(II), termed MntC, in complex with FabC1, a potent antibody inhibitor of the MntABC pathway. This pathway is essential and highly expressed during S. aureus infection and facilitates the import of Mn(II), a critical cofactor for enzymes that detoxify reactive oxygen species (ROS). Structure-based functional studies indicate that FabC1 sterically blocks a structurally conserved surface of MntC, preventing its interaction with the MntB membrane importer and increasing wild-type S. aureus sensitivity to oxidative stress by more than 10-fold. The results define an SBP blocking mechanism as the basis for ABC importer inhibition by an engineered antibody fragment.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Fragmentos de Inmunoglobulinas/farmacología , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/inmunología , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/inmunología , Sitios de Unión , Fragmentos de Inmunoglobulinas/química , Datos de Secuencia Molecular , Unión Proteica , Staphylococcus aureus/enzimología
9.
Cell ; 126(6): 1095-108, 2006 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-16990134

RESUMEN

Bacteria sense their environment using receptors of the histidine sensor kinase family, but how kinase activity is regulated by ligand binding is not well understood. Autoinducer-2 (AI-2), a secreted signaling molecule originally identified in studies of the marine bacterium Vibrio harveyi, regulates quorum-sensing responses and allows communication between different bacterial species. AI-2 signal transduction in V. harveyi requires the integral membrane receptor LuxPQ, comprised of periplasmic binding protein (LuxP) and histidine sensor kinase (LuxQ) subunits. Combined X-ray crystallographic and functional studies show that AI-2 binding causes a major conformational change within LuxP, which in turn stabilizes a quaternary arrangement in which two LuxPQ monomers are asymmetrically associated. We propose that formation of this asymmetric quaternary structure is responsible for repressing the kinase activity of both LuxQ subunits and triggering the transition of V. harveyi into quorum-sensing mode.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Homoserina/análogos & derivados , Lactonas/metabolismo , Fototransducción/fisiología , Fosfotransferasas/química , Fosfotransferasas/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Vibrio/enzimología , Membrana Celular/química , Membrana Celular/metabolismo , Cristalografía por Rayos X , Homoserina/metabolismo , Ligandos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Modelos Moleculares , Unión Proteica/fisiología , Conformación Proteica , Transducción de Señal/fisiología
10.
J Bacteriol ; 187(23): 8081-7, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16291681

RESUMEN

SenC, a Sco1 homolog found in the purple photosynthetic bacteria, has been implicated in affecting photosynthesis and respiratory gene expression, as well as assembly of cytochrome c oxidase. In this study, we show that SenC from Rhodobacter capsulatus is involved in the assembly of a fully functional cbb(3)-type cytochrome c oxidase, as revealed by decreased cytochrome c oxidase activity in a senC mutant. We also show that a putative copper-binding site in SenC is required for activity and that a SenC deletion phenotype can be rescued by the addition of exogenous copper to the growth medium. In addition, we demonstrate that a SenC mutation has an indirect effect on gene expression caused by a reduction in cytochrome c oxidase activity. A model is proposed whereby a reduction in cytochrome c oxidase activity impedes the flow of electrons through the respiratory pathway, thereby affecting the oxidation/reduction state of the ubiquinone pool, leading to alterations of photosystem and respiratory gene expression.


Asunto(s)
Proteínas Bacterianas/metabolismo , Complejo IV de Transporte de Electrones/biosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter capsulatus/enzimología , Secuencias de Aminoácidos/fisiología , Proteínas Bacterianas/genética , Cobre/metabolismo , Complejo IV de Transporte de Electrones/genética , Regulación Bacteriana de la Expresión Génica , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Unión Proteica , Rhodobacter capsulatus/metabolismo , Transcripción Genética
11.
J Bacteriol ; 184(10): 2815-20, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11976311

RESUMEN

Rhodobacter capsulatus utilizes two terminal oxidases for aerobic respiration, cytochrome cbb(3) and ubiquinol oxidase. To determine the transcription factors involved in terminal oxidase expression, ccoN-lacZ and cydA-lacZ protein fusions were assayed in a variety of regulatory mutants. The results of this and previous studies indicate that cytochrome cbb(3) expression is controlled by regB-regA, fnrL, and hvrA and that ubiquinol oxidase expression is controlled by regB-regA, fnrL, hvrA, crtJ, and aerR.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Oxidorreductasas/genética , Rhodobacter capsulatus/enzimología , Factores de Transcripción/fisiología
12.
Philos Trans R Soc Lond B Biol Sci ; 358(1429): 147-53; discussion 153-4, 2003 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-12594923

RESUMEN

All photosynthetic organisms control expression of photosynthesis genes in response to alterations in light intensity as well as to changes in cellular redox potential. Light regulation in plants involves a well-defined set of red- and blue-light absorbing photoreceptors called phytochrome and cryptochrome. Less understood are the factors that control synthesis of the plant photosystem in response to changes in cellular redox. Among a diverse set of photosynthetic bacteria the best understood regulatory systems are those synthesized by the photosynthetic bacterium Rhodobacter capsulatus. This species uses the global two-component signal transduction cascade, RegB and RegA, to anaerobically de-repress anaerobic gene expression. Under reducing conditions, the phosphate on RegB is transferred to RegA, which then activates genes involved in photosynthesis, nitrogen fixation, carbon fixation, respiration and electron transport. In the presence of oxygen, there is a second regulator known as CrtJ, which is responsible for repressing photosynthesis gene expression. CrtJ responds to redox by forming an intramolecular disulphide bond under oxidizing, but not reducing, growth conditions. The presence of the disulphide bond stimulates DNA binding activity of the repressor. There is also a flavoprotein that functions as a blue-light absorbing anti-repressor of CrtJ in the related bacterial species Rhodobacter sphaeroides called AppA. AppA exhibits a novel long-lived photocycle that is initiated by blue-light absorption by the flavin. Once excited, AppA binds to CrtJ thereby inhibiting the repressor activity of CrtJ. Various mechanistic aspects of this photocycle will be discussed.


Asunto(s)
Bacterias/genética , Bacterias/efectos de la radiación , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Luz , Fotosíntesis , Bacterias/metabolismo , Genes Bacterianos/genética , Oxidación-Reducción
13.
Proc Natl Acad Sci U S A ; 99(10): 7078-83, 2002 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-11983865

RESUMEN

Many species of purple photosynthetic bacteria repress synthesis of their photosystem in the presence of molecular oxygen. The bacterium Rhodobacter capsulatus mediates this process by repressing expression of bacteriochlorophyll, carotenoid, and light-harvesting genes via the aerobic repressor, CrtJ. In this study, we demonstrate that CrtJ forms an intramolecular disulfide bond in vitro and in vivo when exposed to oxygen. Mutational and sulfhydryl-specific chemical modification studies indicate that formation of a disulfide bond is critical for CrtJ binding to its target promoters. Analysis of the redox states of aerobically and anaerobically grown cells indicates that they have similar redox states of approximately -200 mV, thereby demonstrating that a change in midpoint potential is not responsible for disulfide bond formation. In vivo and in vitro analyses indicate that disulfide bond formation in CrtJ is insensitive to the addition of hydrogen peroxide but is sensitive to molecular oxygen. These results suggest that disulfide bond formation in CrtJ may differ from the mechanism of disulfide bond formation used by OxyR.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Disulfuros , Regulación Bacteriana de la Expresión Génica , Fotosíntesis , Proteínas Represoras/metabolismo , Rhodobacter capsulatus/metabolismo , Factores de Transcripción/metabolismo , Aerobiosis , Alanina/genética , Alanina/metabolismo , Proteínas Bacterianas/genética , Cisteína/genética , Cisteína/metabolismo , Proteínas de Unión al ADN/genética , Genes Bacterianos , Mutagénesis , Oxidorreductasas/genética , Oxígeno , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Rhodobacter capsulatus/genética , Factores de Transcripción/genética
14.
EMBO J ; 22(18): 4699-708, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12970182

RESUMEN

All living organisms alter their physiology in response to changes in oxygen tension. The photosynthetic bacterium uses the RegB-RegA signal transduction cascade to control a wide variety of oxygen-responding processes such as respiration, photosynthesis, carbon fixation and nitrogen fixation. We demonstrate that a highly conserved cysteine has a role in controlling the activity of the sensor kinase, RegB. In vitro studies indicate that exposure of RegB to oxidizing conditions results in the formation of an intermolecular disulfide bond and that disulfide bond formation is metal-dependent, with the metal fulfilling a structural role. Formation of a disulfide bond in vitro is also shown to convert the kinase from an active dimer into an inactive tetramer state. Mutational analysis indicates that a cysteine residue flanked by cationic amino acids is involved in redox sensing in vitro and in vivo. These residues appear to constitute a novel 'redox-box' that is present in sensor kinases from diverse species of bacteria.


Asunto(s)
Proteínas Bacterianas , Cisteína , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas Quinasas , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter capsulatus/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA