Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Biomacromolecules ; 25(5): 3063-3075, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38652055

RESUMEN

Assemblies of peptides and proteins through specific intermolecular interactions set the basis for macroscopic materials found in nature. Peptides provide easily tunable hydrogen-bonding interactions, which can lead to the formation of ordered structures such as highly stable ß-sheets that can form amyloid-like supramolecular peptide nanofibrils (PNFs). PNFs are of special interest, as they could be considered as mimics of various fibrillar structures found in nature. In their ability to serve as supramolecular scaffolds, they could mimic certain features of the extracellular matrix to provide stability, interact with pathogens such as virions, and transduce signals between the outside and inside of cells. Many PNFs have been reported that reveal rich bioactivities. PNFs supporting neuronal cell growth or lentiviral gene transduction have been studied systematically, and their material properties were correlated to bioactivities. However, the impact of the structure of PNFs, their dynamics, and stabilities on their unique functions is still elusive. Herein, we provide a microscopic view of the self-assembled PNFs to unravel how the amino acid sequence of self-assembling peptides affects their secondary structure and dynamic properties of the peptides within supramolecular fibrils. Based on sequence truncation, amino acid substitution, and sequence reordering, we demonstrate that peptide-peptide aggregation propensity is critical to form bioactive ß-sheet-rich structures. In contrast to previous studies, a very high peptide aggregation propensity reduces bioactivity due to intermolecular misalignment and instabilities that emerge when fibrils are in close proximity to other fibrils in solution. Our multiscale simulation approach correlates changes in biological activity back to single amino acid modifications. Understanding these relationships could lead to future material discoveries where the molecular sequence predictably determines the macroscopic properties and biological activity. In addition, our studies may provide new insights into naturally occurring amyloid fibrils in neurodegenerative diseases.


Asunto(s)
Amiloide , Interacciones Hidrofóbicas e Hidrofílicas , Amiloide/química , Péptidos/química , Agregado de Proteínas , Humanos , Simulación de Dinámica Molecular , Nanofibras/química , Estructura Secundaria de Proteína
2.
J Biol Chem ; 298(12): 102642, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36309087

RESUMEN

Formyl peptide receptors (FPRs) may contribute to inflammation in Alzheimer's disease through interactions with neuropathological Amyloid beta (Aß) peptides. Previous studies reported activation of FPR2 by Aß1-42, but further investigation of other FPRs and Aß variants is needed. This study provides a comprehensive overview of the interactions of mouse and human FPRs with different physiologically relevant Aß-peptides using transiently transfected cells in combination with calcium imaging. We observed that, in addition to hFPR2, all other hFPRs also responded to Aß1-42, Aß1-40, and the naturally occurring variants Aß11-40 and Aß17-40. Notably, Aß11-40 and Aß17-40 are very potent activators of mouse and human FPR1, acting at nanomolar concentrations. Buffer composition and aggregation state are extremely crucial factors that critically affect the interaction of Aß with different FPR subtypes. To investigate the physiological relevance of these findings, we examined the effects of Aß11-40 and Aß17-40 on the human glial cell line U87. Both peptides induced a strong calcium flux at concentrations that are very similar to those obtained in experiments for hFPR1 in HEK cells. Further immunocytochemistry, qPCR, and pharmacological experiments verified that these responses were primarily mediated through hFPR1. Chemotaxis experiments revealed that Aß11-40 but not Aß17-40 evoked cell migration, which argues for a functional selectivity of different Aß peptides. Together, these findings provide the first evidence that not only hFPR2 but also hFPR1 and hFPR3 may contribute to neuroinflammation in Alzheimer's disease through an interaction with different Aß variants.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Receptores de Formil Péptido , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Línea Celular , Fragmentos de Péptidos/metabolismo , Receptores de Formil Péptido/metabolismo , Animales , Ratones
3.
Macromol Rapid Commun ; 44(16): e2200332, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35689352

RESUMEN

Bioderived polymers are one of many current research areas that promise a sustainable future. Due to their unique properties, the bioderived polymer polydopamine has been in the spotlight over the last decades. Its ability to adhere to virtually any surface and its stability over a wide pH range as well as in several organic solvents make it a suitable candidate for various applications like coatings and biosensors. However, strong light absorption over a broad range of wavelengths and high quenching efficiency limit its uses. Therefore, new bioderived polymers with similar features to polydopamine but without fluorescence quenching properties are highly desirable. Herein, the electropolymerization of a bioderived analog of dopamine, 3-amino-l-tyrosine, is demonstrated. The resulting polymer, poly(amino-l-tyrosine), exhibits several characteristics complementary to or even exceeding those of polydopamine and its analog, polynorepinephrine, rendering poly(amino-l-tyrosine) attractive for the development of sensors and photoactive devices. Cyclic voltammetry, spectro-electrochemistry, and electrochemical quartz crystal microbalance measurements are applied to study the electrodeposition of this material, and the resulting films are compared to polydopamine and polynorepinephrine. Impedance spectroscopy reveals increased ion permeability of poly(amino-l-tyrosine) compared to polydopamine and polynorepinephrine. Moreover, the reduced fluorescence quenching of poly(amino-l-tyrosine) supports its use as coating for biosensors and organic semiconductors.


Asunto(s)
Técnicas Biosensibles , Polímeros , Polímeros/química , Tirosina , Dopamina/química , Tecnicas de Microbalanza del Cristal de Cuarzo
4.
Nano Lett ; 22(2): 578-585, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34904831

RESUMEN

The actuation of micro- and nanostructures controlled by external stimuli remains one of the exciting challenges in nanotechnology due to the wealth of fundamental questions and potential applications in energy harvesting, robotics, sensing, biomedicine, and tunable metamaterials. Photoactuation utilizes the conversion of light into motion through reversible chemical and physical processes and enables remote and spatiotemporal control of the actuation. Here, we report a fast light-to-motion conversion in few-nanometer thick bare polydopamine (PDA) membranes stimulated by visible light. Light-induced heating of PDA leads to desorption of water molecules and contraction of membranes in less than 140 µs. Switching off the light leads to a spontaneous expansion in less than 20 ms due to heat dissipation and water adsorption. Our findings demonstrate that pristine PDA membranes are multiresponsive materials that can be harnessed as robust building blocks for soft, micro-, and nanoscale actuators stimulated by light, temperature, and moisture level.


Asunto(s)
Nanoestructuras , Polímeros , Indoles , Nanotecnología , Polímeros/química
5.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36983008

RESUMEN

Periodontitis is a chronic biofilm-associated inflammatory disease of the tooth-supporting tissues that causes tooth loss. It is strongly associated with anaerobic bacterial colonization and represents a substantial global health burden. Due to a local hypoxic environment, tissue regeneration is impaired. Oxygen therapy has shown promising results as a potential treatment of periodontitis, but so far, local oxygen delivery remains a key technical challenge. An oxygen (O2)-releasing hyaluronic acid (HA)-based dispersion with a controlled oxygen delivery was developed. Cell viability of primary human fibroblasts, osteoblasts, and HUVECs was demonstrated, and biocompatibility was tested using a chorioallantoic membrane assay (CAM assay). Suppression of anaerobic growth of Porphyromonas gingivalis was shown using the broth microdilution assay. In vitro assays showed that the O2-releasing HA was not cytotoxic towards human primary fibroblasts, osteoblasts, and HUVECs. In vivo, angiogenesis was enhanced in a CAM assay, although not to a statistically significant degree. Growth of P. gingivalis was inhibited by CaO2 concentrations higher than 256 mg/L. Taken together, the results of this study demonstrate the biocompatibility and selective antimicrobial activity against P. gingivalis for the developed O2-releasing HA-based dispersion and the potential of O2-releasing biomaterials for periodontal tissue regeneration.


Asunto(s)
Ácido Hialurónico , Periodontitis , Humanos , Ácido Hialurónico/farmacología , Ingeniería de Tejidos , Oxígeno , Porphyromonas gingivalis , Periodontitis/terapia , Periodontitis/microbiología
6.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902270

RESUMEN

Here we present for the first time a potential wound dressing material implementing aptamers as binding entities to remove pathogenic cells from newly contaminated surfaces of wound matrix-mimicking collagen gels. The model pathogen in this study was the Gram-negative opportunistic bacterium Pseudomonas aeruginosa, which represents a considerable health threat in hospital environments as a cause of severe infections of burn or post-surgery wounds. A two-layered hydrogel composite material was constructed based on an established eight-membered focused anti-P. aeruginosa polyclonal aptamer library, which was chemically crosslinked to the material surface to form a trapping zone for efficient binding of the pathogen. A drug-loaded zone of the composite released the C14R antimicrobial peptide to deliver it directly to the bound pathogenic cells. We demonstrate that this material combining aptamer-mediated affinity and peptide-dependent pathogen eradication can quantitatively remove bacterial cells from the "wound" surface, and we show that the surface-trapped bacteria are completely killed. The drug delivery function of the composite thus represents an extra safeguarding property and thus probably one of the most important additional advances of a next-generation or smart wound dressing ensuring the complete removal and/or eradication of the pathogen of a freshly infected wound.


Asunto(s)
Hidrogeles , Infección de Heridas , Humanos , Pseudomonas aeruginosa , Péptidos Antimicrobianos , Infección de Heridas/microbiología , Vendajes , Antibacterianos
7.
J Am Chem Soc ; 143(12): 4782-4789, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33750125

RESUMEN

Complex coacervated-based assemblies form when two oppositely charged polyelectrolytes combine to phase separate into a supramolecular architecture. These architectures range from complex coacervate droplets, spherical and worm-like micelles, to vesicles. These assemblies are widely applied, for example, in the food industry, and as underwater or medical adhesives, but they can also serve as a great model for biological assemblies. Indeed, biology relies on complex coacervation to form so-called membraneless organelles, dynamic and transient droplets formed by the coacervation of nucleic acids and proteins. To regulate their function, membraneless organelles are dynamically maintained by chemical reaction cycles, including phosphorylation and dephosphorylation, but exact mechanisms remain elusive. Recently, some model systems also regulated by chemical reaction cycles have been introduced, but how to design such systems and how molecular design affects their properties is unclear. In this work, we test a series of cationic peptides for their chemically fueled coacervation, and we test how their design can affect the dynamics of assembly and disassembly of the emerging structures. We combine them with both homo- and block copolymers and study the morphologies of the assemblies, including morphological transitions that are driven by the chemical reaction cycle. We deduce heuristic design rules that can be applied to other chemically regulated systems. These rules will help develop membraneless organelle model systems and lead to exciting new applications of complex coacervate-based examples like temporary adhesives.


Asunto(s)
Péptidos/química , Polielectrolitos/química , Modelos Moleculares , Estructura Molecular
8.
Small ; 17(5): e2005743, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33448102

RESUMEN

Liquid crystalline hydrogels are an attractive class of soft materials to direct charge transport, mechanical actuation, and cell migration. When such systems contain supramolecular polymers, it is possible in principle to easily shear align nanoscale structures and create bulk anisotropic properties. However, reproducibly fabricating and patterning aligned supramolecular domains in 3D hydrogels remains a challenge using conventional fabrication techniques. Here, a method is reported for 3D printing of ionically crosslinked liquid crystalline hydrogels from aqueous supramolecular polymer inks. Using a combination of experimental techniques and molecular dynamics simulations, it is found that pH and salt concentration govern intermolecular interactions among the self-assembled structures where lower charge densities on the supramolecular polymers and higher charge screening from the electrolyte result in higher viscosity inks. Enhanced hierarchical interactions among assemblies in high viscosity inks increase the printability and ultimately lead to greater nanoscale alignment in extruded macroscopic filaments when using small nozzle diameters and fast print speeds. The use of this approach is demonstrated to create materials with anisotropic ionic and electronic charge transport as well as scaffolds that trigger the macroscopic alignment of cells due to the synergy of supramolecular self-assembly and additive manufacturing.


Asunto(s)
Hidrogeles , Impresión Tridimensional , Matriz Extracelular , Polímeros , Viscosidad
9.
Biomacromolecules ; 18(3): 808-818, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28199098

RESUMEN

Polycations are popular agents for nonviral delivery of DNA to mammalian cells. Adding hydrophobic, biodegradable, or cell-penetrating functions could help to improve their performance, which at present is below that of viral agents. A crucial first step in gene delivery is the complexation of the DNA. The characteristics of these "polyplexes" presumably influence or even determine the subsequent steps of membrane passage, intracellular traveling/DNA release, and nuclear uptake. Herein, polyplexes formed with linear poly(ethylenimine) (l-PEI) are compared to complexes generated with functionalized diblock copolymers. While l-PEI interacts only electrostatically with the DNA, interaction in the case of the diblock polymers may be mixed-mode. In certain cases, transfection efficiency improved when the polyplexes were formed in hypertonic solution. Moreover, whereas conventional PEI-based polyplexes enter the cells via endocytosis, at least one of the diblock agents seemed to promote entry via transient destabilization of the plasma membrane.


Asunto(s)
ADN/química , Plásmidos/química , Polietileneimina/química , Animales , Materiales Biocompatibles/química , Células CHO , Línea Celular , Cricetulus , Endocitosis/efectos de los fármacos , Técnicas de Transferencia de Gen , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Tamaño de la Partícula , Poliaminas/química , Polielectrolitos , Electricidad Estática , Transfección
10.
Adv Healthc Mater ; 13(4): e2301364, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37947246

RESUMEN

Retroviral gene delivery is the key technique for in vitro and ex vivo gene therapy. However, inefficient virion-cell attachment resulting in low gene transduction efficacy remains a major challenge in clinical applications. Adjuvants for ex vivo therapy settings need to increase transduction efficiency while being easily removed or degraded post-transduction to prevent the risk of venous embolism after infusing the transduced cells back to the bloodstream of patients, yet no such peptide system have been reported thus far. In this study, peptide amphiphiles (PAs) with a hydrophobic fatty acid and a hydrophilic peptide moiety that reveal enhanced viral transduction efficiency are introduced. The PAs form ß-sheet-rich fibrils that assemble into positively charged aggregates, promoting virus adhesion to the cell membrane. The block-type amphiphilic sequence arrangement in the PAs ensures efficient cell-virus interaction and biodegradability. Good biodegradability is observed for fibrils forming small aggregates and it is shown that via molecular dynamics simulations, the fibril-fibril interactions of PAs are governed by fibril surface hydrophobicity. These findings establish PAs as additives in retroviral gene transfer, rivalling commercially available transduction enhancers in efficiency and degradability with promising translational options in clinical gene therapy applications.


Asunto(s)
Técnicas de Transferencia de Gen , Péptidos , Humanos , Péptidos/química , Terapia Genética , Adyuvantes Inmunológicos
11.
Adv Mater ; 36(29): e2401137, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38742799

RESUMEN

In contrast to biological cell membranes, it is still a major challenge for synthetic membranes to efficiently separate ions and small molecules due to their similar sizes in the sub-nanometer range. Inspired by biological ion channels with their unique channel wall chemistry that facilitates ion sieving by ion-channel interactions, the first free-standing, ultrathin (10-17 nm) nanomembranes composed entirely of polydopamine (PDA) are reported here as ion and molecular sieves. These nanomembranes are obtained via an easily scalable electropolymerization strategy and provide nanochannels with various amine and phenolic hydroxyl groups that offer a favorable chemical environment for ion-channel electrostatic and hydrogen bond interactions. They exhibit remarkable selectivity for monovalent ions over multivalent ions and larger species with K+/Mg2+ of ≈4.2, K+/[Fe(CN)6]3- of ≈10.3, and K+/Rhodamine B of ≈273.0 in a pressure-driven process, as well as cyclic reversible pH-responsive gating properties. Infrared spectra reveal hydrogen bond formation between hydrated multivalent ions and PDA, which prevents the transport of multivalent ions and facilitates high selectivity. Chemically rich, free-standing, and pH-responsive PDA nanomembranes with specific interaction sites are proposed as customizable high-performance sieves for a wide range of challenging separation requirements.

12.
ACS Appl Nano Mater ; 7(12): 14146-14153, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38962509

RESUMEN

We present CdSe@CdS nanorods coated with a redox-active polydopamine (PDA) layer functionalized with cobaloxime-derived photocatalysts for efficient solar-driven hydrogen evolution in aqueous environments. The PDA-coating provides reactive groups for the functionalization of the nanorods with different molecular catalysts, facilitates charge separation and transfer of electrons from the excited photosensitizer to the catalyst, and reduces photo-oxidation of the photosensitizer. X-ray photoelectron spectroscopy (XPS) confirms the successful functionalization of the nanorods with cobalt-based catalysts, whereas the catalyst loading per nanorod is quantified by total reflection X-ray fluorescence spectrometry (TXRF). A systematic comparison of different types of cobalt-based catalysts was carried out, and their respective performance was analyzed in terms of the number of nanorods and the amount of catalyst in each sample [turnover number, (TON)]. This study shows that the performance of these multicomponent photocatalysts depends strongly on the catalyst loading and less on the specific structure of the molecular catalyst. Lower catalyst loading is advantageous for increasing the TON because the catalysts compete for a limited number of charge carriers at the nanoparticle surface. Therefore, increasing the catalyst loading relative to the absolute amount of hydrogen produced does not lead to a steady increase in the photocatalytic activity. In our work, we provide insights into how the performance of a multicomponent photocatalytic system is determined by the intricate interplay of its components. We identify the stable attachment of the catalyst and the ratio between the catalyst and photosensitizer as critical parameters that must be fine-tuned for optimal performance.

13.
Nanoscale ; 16(34): 16227-16237, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39140363

RESUMEN

The contraction of nanomaterials triggered by stimuli can be harnessed for micro- and nanoscale energy harvesting, sensing, and artificial muscles toward manipulation and directional motion. The search for these materials is dictated by optimizing several factors, such as stimulus type, conversion efficiency, kinetics and dynamics, mechanical strength, compatibility with other materials, production cost and environmental impact. Here, we report the results of studies on bio-inspired nanomembranes made of poly-catecholamines such as polydopamine, polynorepinephrine, and polydextrodopa. Our findings reveal robust mechanical features and remarkable multi-responsive properties of these materials. In particular, their immediate contraction can be triggered globally by atmospheric moisture reduction and temperature rise and locally by laser or white light irradiation. For each scenario, the process is fully reversible, i.e., membranes spontaneously expand upon removing the stimulus. Our results unveil the universal multi-responsive nature of the considered polycatecholamine membranes, albeit with distinct differences in their mechanical features and response times to light stimulus. We attribute the light-triggered contraction to photothermal heating, leading to water desorption and subsequent contraction of the membranes. The combination of multi-responsiveness, mechanical robustness, remote control via light, low-cost and large-scale fabrication, biocompatibility, and low-environment impact makes polycatecholamine materials promising candidates for advancing technologies.

14.
Biomater Sci ; 11(15): 5251-5261, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37341479

RESUMEN

Amyloid-like nanofibers from self-assembling peptides can promote viral gene transfer for therapeutic applications. Traditionally, new sequences are discovered either from screening large libraries or by creating derivatives of known active peptides. However, the discovery of de novo peptides, which are sequence-wise not related to any known active peptides, is limited by the difficulty to rationally predict structure-activity relationships because their activities typically have multi-scale and multi-parameter dependencies. Here, we used a small library of 163 peptides as a training set to predict de novo sequences for viral infectivity enhancement using a machine learning (ML) approach based on natural language processing. Specifically, we trained an ML model using continuous vector representations of the peptides, which were previously shown to retain relevant information embedded in the sequences. We used the trained ML model to sample the sequence space of peptides with 6 amino acids to identify promising candidates. These 6-mers were then further screened for charge and aggregation propensity. The resulting 16 new 6-mers were tested and found to be active with a 25% hit rate. Strikingly, these de novo sequences are the shortest active peptides for infectivity enhancement reported so far and show no sequence relation to the training set. Moreover, by screening the sequence space, we discovered the first hydrophobic peptide fibrils with a moderately negative surface charge that can enhance infectivity. Hence, this ML strategy is a time- and cost-efficient way for expanding the sequence space of short functional self-assembling peptides exemplified for therapeutic viral gene delivery.


Asunto(s)
Nanofibras , Péptidos , Secuencia de Aminoácidos , Péptidos/química , Amiloide
15.
Nat Commun ; 14(1): 5121, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612273

RESUMEN

Gene therapy via retroviral vectors holds great promise for treating a variety of serious diseases. It requires the use of additives to boost infectivity. Amyloid-like peptide nanofibers (PNFs) were shown to efficiently enhance retroviral gene transfer. However, the underlying mode of action of these peptides remains largely unknown. Data-mining is an efficient method to systematically study structure-function relationship and unveil patterns in a database. This data-mining study elucidates the multi-scale structure-property-activity relationship of transduction enhancing peptides for retroviral gene transfer. In contrast to previous reports, we find that not the amyloid fibrils themselves, but rather µm-sized ß-sheet rich aggregates enhance infectivity. Specifically, microscopic aggregation of ß-sheet rich amyloid structures with a hydrophobic surface pattern and positive surface charge are identified as key material properties. We validate the reliability of the amphiphilic sequence pattern and the general applicability of the key properties by rationally creating new active sequences and identifying short amyloidal peptides from various pathogenic and functional origin. Data-mining-even for small datasets-enables the development of new efficient retroviral transduction enhancers and provides important insights into the diverse bioactivity of the functional material class of amyloids.


Asunto(s)
Proteínas Amiloidogénicas , Minería de Datos , Reproducibilidad de los Resultados , Bases de Datos Factuales , Péptidos , Retroviridae
16.
Chem Mater ; 35(21): 9192-9207, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38027541

RESUMEN

Bioinspired, stimuli-responsive, polymer-functionalized mesoporous films are promising platforms for precisely regulating nanopore transport toward applications in water management, iontronics, catalysis, sensing, drug delivery, or energy conversion. Nanopore technologies still require new, facile, and effective nanopore functionalization with multi- and stimuli-responsive polymers to reach these complicated application targets. In recent years, zwitterionic and multifunctional polydopamine (PDA) films deposited on planar surfaces by electropolymerization have helped surfaces respond to various external stimuli such as light, temperature, moisture, and pH. However, PDA has not been used to functionalize nanoporous films, where the PDA-coating could locally regulate the ionic nanopore transport. This study investigates the electropolymerization of homogeneous thin PDA films to functionalize nanopores of mesoporous silica films. We investigate the effect of different mesoporous film structures and the number of electropolymerization cycles on the presence of PDA at mesopores and mesoporous film surfaces. Our spectroscopic, microscopic, and electrochemical analysis reveals that the amount and location (pores and surface) of deposited PDA at mesoporous films is related to the combination of the number of electropolymerization cycles and the mesoporous film thickness and pore size. In view of the application of the proposed PDA-functionalized mesoporous films in areas requiring ion transport control, we studied the ion nanopore transport of the films by cyclic voltammetry. We realized that the amount of PDA in the nanopores helps to limit the overall ionic transport, while the pH-dependent transport mechanism of pristine silica films remains unchanged. It was found that (i) the pH-dependent deprotonation of PDA and silica walls and (ii) the insulation of the indium-tin oxide (ITO) surface by increasing the amount of PDA within the mesoporous silica film affect the ionic nanopore transport.

17.
Macromol Biosci ; 23(2): e2200294, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36281903

RESUMEN

Amyloid-like fibrils are a special class of self-assembling peptides that emerge as a promising nanomaterial with rich bioactivity for applications such as cell adhesion and growth. Unlike the extracellular matrix, the intrinsically stable amyloid-like fibrils do not respond nor adapt to stimuli of their natural environment. Here, a self-assembling motif (CKFKFQF), in which a photosensitive o-nitrobenzyl linker (PCL) is inserted, is designed. This peptide (CKFK-PCL-FQF) assembles into amyloid-like fibrils comparable to the unsubstituted CKFKFQF and reveals a strong response to UV-light. After UV irradiation, the secondary structure of the fibrils, fibril morphology, and bioactivity are lost. Thus, coating surfaces with the pre-formed fibrils and exposing them to UV-light through a photomask generate well-defined areas with patterns of intact and destroyed fibrillar morphology. The unexposed, fibril-coated surface areas retain their ability to support cell adhesion in culture, in contrast to the light-exposed regions, where the cell-supportive fibril morphology is destroyed. Consequently, the photoresponsive peptide nanofibrils provide a facile and efficient way of cell patterning, exemplarily demonstrated for A549, Chinese Hamster Ovary, and Raw Dual type cells. This study introduces photoresponsive amyloid-like fibrils as adaptive functional materials to precisely arrange cells on surfaces.


Asunto(s)
Amiloide , Péptidos , Cricetinae , Animales , Amiloide/química , Amiloide/metabolismo , Células CHO , Cricetulus , Estructura Secundaria de Proteína
18.
Biomacromolecules ; 13(11): 3463-74, 2012 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-23020076

RESUMEN

Delivery of polynucleotides such as plasmid DNA (pDNA) and siRNA to nondividing and primary cells by nonviral vectors presents a considerable challenge. In this contribution, we introduce a novel type of PDMAEMA-based star-shaped nanoparticles that (i) are efficient transfection agents in clinically relevant and difficult-to-transfect human cells (Jurkat T cells, primary T lymphocytes) and (ii) can efficiently deliver siRNA to human primary T lymphocytes resulting to more than 40% silencing of the targeted gene. Transfection efficiencies achieved by the new vectors in serum-free medium are generally high and only slightly reduced in the presence of serum, while cytotoxicity and cell membrane disruptive potential at physiological pH are low. Therefore, these novel agents are expected to be promising carriers for nonviral gene transfer. Moreover, we propose a general design principle for the construction of polycationic nanoparticles capable of delivering nucleic acids to the above-mentioned cells.


Asunto(s)
Técnicas de Transferencia de Gen , Vectores Genéticos , Plásmidos/genética , ARN Interferente Pequeño/genética , Linfocitos T/citología , Animales , Antígenos CD4/análisis , Antígenos CD4/genética , Células CHO , Diferenciación Celular , Células Cultivadas , Cricetinae , Expresión Génica , Células HEK293 , Humanos , Células Jurkat , Ratones , Nanopartículas , Ácidos Nucleicos/química , Polimerizacion , Interferencia de ARN , Transfección
19.
J Am Chem Soc ; 133(24): 9592-606, 2011 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-21591785

RESUMEN

We report the unique layer-by-layer (LbL) assembly behavior of pH-sensitive star-shaped polyelectrolytes with both linear and exponential growth modes controlled by star architecture and assembly conditions. Cationic poly[2-(dimethylamino)ethyl methacrylate] and anionic poly(acrylic acid) stars were synthesized via "core-first" atom-transfer radical polymerization (ATRP) based on multifunctional initiators, in addition to their linear analogues. We demonstrated the LbL growth behavior as a function of deposition pH (ranging from 5 to 7), number of layers (up to 30 bilayers), and the method of assembly (dip- vs spin-assisted LbL). The spin-assisted LbL assembly makes it possible to render smoother and thinner LbL films with parameters controlled by the shear rate and pH conditions. In contrast, for dip-assisted LbL assembly, the pH-dependent exponential growth was observed for both linear and star polyelectrolytes. In the case of linear/linear pair, the exponential buildup was accompanied with a notable surface segregation which resulted in dramatic surface nonuniformity, "wormlike" heterogeneous morphology, and dramatic surface roughening. In contrast, star/linear and star/star LbL films showed very uniform and smooth surface morphology (roughness below 2.0 nm on the scale of 10 µm × 10 µm) with much larger thickness reaching up to 1.0 µm for 30 bilayers and rich optical interference effects. Star polyelectrolytes with partially screened charges and high mobility caused by compact branched architecture appear to facilitate fast diffusion and exponential buildup of LbL films. We suggest that the fast buildup prevents long-range lateral diffusion of polyelectrolyte star components, hinders large-scale microphase separation, and thus leads to unique thick, smooth, uniform, transparent, and colorful LbL films from star polyelectrolytes in contrast to mostly heterogeneous films from traditional linear counterparts.

20.
Langmuir ; 27(19): 12042-51, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21770418

RESUMEN

Many synthetic polycations have the ability to form complexes with the polyanion DNA, yet only a few, most notably poly(ethylene imine) (PEI), are efficient gene-delivery vehicles. Although a common explanation of this observation relies on the buffering capacity of the polycation, the intracellular stability of the complex may also play a role and should not be neglected. Assays typically used to follow complex formation, however, often do not provide the required information on stability. In this article, we propose the change in the DNA melting temperature observable after complex formation to be a significant indicator of complex stability. For a given DNA/polycation ratio, changes in the melting temperature are shown to depend on the polycation chemistry but not on the DNA topology or the polycation architecture. Effects of changes in the DNA/polycation ratio as well as the effect of polycation quaternization can be interpreted using the melting temperature assay. Finally, the assay was used to follow the displacement of DNA from the complexes by poly(methacrylic acid) or short single-stranded DNA sequences as competing polyanions.


Asunto(s)
ADN/química , Técnicas de Transferencia de Gen , Iminas/química , Polietilenos/química , Ácidos Polimetacrílicos/química , Temperatura de Transición , Desnaturalización de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA