Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Dev Biol ; 490: 110-116, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35809631

RESUMEN

The development of the dendrite and the axon during neuronal polarization underlies the directed flow of information in the brain. Seminal studies on axon development have dominated the mechanistic analysis of neuronal polarization. These studies, many originating from examinations in cultured hippocampal and cortical neurons in vitro, have established a prevalent view that axon formation precedes and is necessary for neuronal polarization. There is also in vivo evidence supporting this view. Nevertheless, the establishment of bipolar polarity, the leading edge, and apical dendrite development in pyramidal neurons in vivo occur when axon formation is prevented. Furthermore, recent mounting evidence suggest that directed mechanisms might mediate bipolar polarity/leading process and subsequent apical dendrite development. In the presence of spatially directed extracellular cues in the developing brain, these events may operate independently of axon forming events. In this perspective we summarize evidence in support of these evolving views in neuronal polarization and highlight recent findings on dedicated mechanisms acting in apical dendrite development.


Asunto(s)
Polaridad Celular , Neuronas , Axones/fisiología , Polaridad Celular/fisiología , Dendritas/fisiología , Neurogénesis , Neuronas/fisiología
2.
Proc Natl Acad Sci U S A ; 114(41): E8770-E8779, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28973889

RESUMEN

Intracellular chloride ([Cl-]i) and pH (pHi) are fundamental regulators of neuronal excitability. They exert wide-ranging effects on synaptic signaling and plasticity and on development and disorders of the brain. The ideal technique to elucidate the underlying ionic mechanisms is quantitative and combined two-photon imaging of [Cl-]i and pHi, but this has never been performed at the cellular level in vivo. Here, by using a genetically encoded fluorescent sensor that includes a spectroscopic reference (an element insensitive to Cl- and pH), we show that ratiometric imaging is strongly affected by the optical properties of the brain. We have designed a method that fully corrects for this source of error. Parallel measurements of [Cl-]i and pHi at the single-cell level in the mouse cortex showed the in vivo presence of the widely discussed developmental fall in [Cl-]i and the role of the K-Cl cotransporter KCC2 in this process. Then, we introduce a dynamic two-photon excitation protocol to simultaneously determine the changes of pHi and [Cl-]i in response to hypercapnia and seizure activity.


Asunto(s)
Cloruros/metabolismo , Citoplasma/metabolismo , Hipocampo/metabolismo , Imagen Óptica/métodos , Fotones , Células Piramidales/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Animales , Animales Recién Nacidos , Hipocampo/citología , Concentración de Iones de Hidrógeno , Ratones , Células Piramidales/citología
3.
J Neurosci ; 38(3): 631-647, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29217690

RESUMEN

New dentate granule cells (DGCs) are continuously generated, and integrate into the preexisting hippocampal network in the adult brain. How an adult-born neuron with initially simple spindle-like morphology develops into a DGC, consisting of a single apical dendrite with further branches, remains largely unknown. Here, using retroviruses to birth date and manipulate newborn neurons, we examined initial dendritic formation and possible underlying mechanisms. We found that GFP-expressing newborn cells began to establish a DGC-like morphology at ∼7 d after birth, with a primary dendrite pointing to the molecular layer, but at this stage, with several neurites in the neurogenic zone. Interestingly, the Golgi apparatus, an essential organelle for neurite growth and maintenance, was dynamically repositioning in the soma of newborn cells during this initial integration stage. Two weeks after birth, by which time most neurites in the neurogenic zone were eliminated, a compact Golgi apparatus was positioned exclusively at the base of the primary dendrite. We analyzed the presence of Golgi-associated genes using single-cell transcriptomes of newborn DGCs, and among Golgi-related genes, found the presence of STK25 and STRAD, regulators of embryonic neuronal development. When we knocked down either of these two proteins, we found Golgi mislocalization and extensive aberrant dendrite formation. Furthermore, overexpression of a mutated form of STRAD, underlying the disorder polyhydramnios, megalencephaly, and symptomatic epilepsy, characterized by abnormal brain development and intractable epilepsy, caused similar defects in Golgi localization and dendrite formation in adult-born neurons. Together, our findings reveal a role for Golgi repositioning in regulating the initial integration of adult-born DGCs.SIGNIFICANCE STATEMENT Since the discovery of the continuous generation of new neurons in the adult hippocampus, extensive effort was directed toward understanding the functional contribution of these newborn neurons to the existing hippocampal circuit and associated behaviors, while the molecular mechanisms controlling their early morphological integration are less well understood. Dentate granule cells (DGCs) have a single, complex, apical dendrite. The events leading adult-born DGCs' to transition from simple spindle-like morphology to mature dendrite morphology are largely unknown. We studied establishment of newborn DGCs dendritic pattern and found it was mediated by a signaling pathway regulating precise localization of the Golgi apparatus. Furthermore, this Golgi-associated mechanism for dendrite establishment might be impaired in a human genetic epilepsy syndrome, polyhydramnios, megalencephaly, and symptomatic epilepsy.


Asunto(s)
Dendritas/ultraestructura , Aparato de Golgi/ultraestructura , Neurogénesis/fisiología , Neuronas/citología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Dendritas/metabolismo , Aparato de Golgi/metabolismo , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Brain ; 141(9): 2772-2794, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30059965

RESUMEN

Autism spectrum disorders are neurodevelopmental conditions with diverse aetiologies, all characterized by common core symptoms such as impaired social skills and communication, as well as repetitive behaviour. Cell adhesion molecules, receptor tyrosine kinases and associated downstream signalling have been strongly implicated in both neurodevelopment and autism spectrum disorders. We found that downregulation of the cell adhesion molecule NEGR1 or the receptor tyrosine kinase fibroblast growth factor receptor 2 (FGFR2) similarly affects neuronal migration and spine density during mouse cortical development in vivo and results in impaired core behaviours related to autism spectrum disorders. Mechanistically, NEGR1 physically interacts with FGFR2 and modulates FGFR2-dependent extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) signalling by decreasing FGFR2 degradation from the plasma membrane. Accordingly, FGFR2 overexpression rescues all defects due to Negr1 knockdown in vivo. Negr1 knockout mice present phenotypes similar to Negr1-downregulated animals. These data indicate that NEGR1 and FGFR2 cooperatively regulate cortical development and suggest a role for defective NEGR1-FGFR2 complex and convergent downstream ERK and AKT signalling in autism spectrum disorders.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Moléculas de Adhesión Celular Neuronal/fisiología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/fisiología , Animales , Trastorno del Espectro Autista/metabolismo , Conducta Animal/fisiología , Moléculas de Adhesión Celular Neuronal/metabolismo , Membrana Celular/metabolismo , Movimiento Celular , Corteza Cerebral/crecimiento & desarrollo , Espinas Dendríticas/fisiología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/fisiología
5.
Cereb Cortex ; 28(11): 4049-4062, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30169756

RESUMEN

KCC2 is the major chloride extruder in neurons. The spatiotemporal regulation of KCC2 expression orchestrates the developmental shift towards inhibitory GABAergic drive and the formation of glutamatergic synapses. Whether KCC2's role in synapse formation is similar in different brain regions is unknown. First, we found that KCC2 subcellular localization, but not overall KCC2 expression levels, differed between cortex and hippocampus during the first postnatal week. We performed site-specific in utero electroporation of KCC2 cDNA to target either hippocampal CA1 or somatosensory cortical pyramidal neurons. We found that a premature expression of KCC2 significantly decreased spine density in CA1 neurons, while it had the opposite effect in cortical neurons. These effects were cell autonomous, because single-cell biolistic overexpression of KCC2 in hippocampal and cortical organotypic cultures also induced a reduction and an increase of dendritic spine density, respectively. In addition, we found that the effects of its premature expression on spine density were dependent on BDNF levels. Finally, we showed that the effects of KCC2 on dendritic spine were dependent on its chloride transporter function in the hippocampus, contrary to what was observed in cortex. Altogether, these results demonstrate that KCC2 regulation of dendritic spine development, and its underlying mechanisms, are brain-region specific.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Región CA1 Hipocampal/crecimiento & desarrollo , Espinas Dendríticas/fisiología , Corteza Somatosensorial/crecimiento & desarrollo , Simportadores/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA1 Hipocampal/citología , Regulación del Desarrollo de la Expresión Génica , Células Piramidales/fisiología , Ratas Sprague-Dawley , Simportadores/metabolismo , Cotransportadores de K Cl
6.
Mol Cell Proteomics ; 13(3): 733-48, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24382801

RESUMEN

A complex and still not comprehensively resolved panel of transmembrane proteins regulates the outgrowth and the subsequent morphological and functional development of neuronal processes. In order to gain a more detailed description of these events at the molecular level, we have developed a cell surface biotinylation assay to isolate, detect, and quantify neuronal membrane proteins. When we applied our assay to investigate neuron maturation in vitro, we identified 439 differentially expressed proteins, including 20 members of the immunoglobulin superfamily. Among these candidates, we focused on Negr1, a poorly described cell adhesion molecule. We demonstrated that Negr1 controls the development of neurite arborization in vitro and in vivo. Given the tight correlation existing among synaptic cell adhesion molecules, neuron maturation, and a number of neurological disorders, our assay results are a useful tool that can be used to support the understanding of the molecular bases of physiological and pathological brain function.


Asunto(s)
Bioensayo/métodos , Moléculas de Adhesión Celular Neuronal/metabolismo , Membrana Celular/metabolismo , Dendritas/metabolismo , Animales , Biotinilación , Diferenciación Celular , Forma de la Célula , Células Cultivadas , Espinas Dendríticas/metabolismo , Silenciador del Gen , Células HEK293 , Humanos , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Sinapsis/metabolismo
7.
Cell Rep ; 38(11): 110483, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35294878

RESUMEN

The development of the apical dendrite from the leading process of the bipolar pyramidal neuron might be directed by spatially organized extrinsic cues acting on localized intrinsic determinants. The extracellular cues regulating apical dendrite polarization remain elusive. We show that leading process and apical dendrite development are directed by class III Semaphorins and mediated by a localized cGMP-synthesizing complex. The scaffolding protein Scribble that associates with the cGMP-synthesizing enzyme soluble guanylate cyclase (sGC) also associates with the Semaphorin3A (Sema3A) co-receptor PlexinA3. Deletion or knockdown of PlexinA3 and Sema3A or disruption of PlexinA3-Scribble association prevents Sema3A-mediated cGMP increase and causes defects in apical dendrite development. These manipulations also impair bipolar polarity and leading process establishment. Local cGMP elevation or sGC expression rescues the effects of PlexinA3 knockdown or PlexinA3-Scribble complex disruption. During neuronal polarization, leading process and apical dendrite development are directed by a scaffold that links Semaphorin cue to cGMP increase.


Asunto(s)
Semaforina-3A , Semaforinas , Células Cultivadas , GMP Cíclico/metabolismo , Dendritas/metabolismo , Neurogénesis , Semaforina-3A/metabolismo , Semaforina-3A/farmacología , Semaforinas/metabolismo
8.
Cell Rep ; 31(2): 107519, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294442

RESUMEN

Studies in cultured neurons have established that axon specification instructs neuronal polarization and is necessary for dendrite development. However, dendrite formation in vivo occurs when axon formation is prevented. The mechanisms promoting dendrite development remain elusive. We find that apical dendrite development is directed by a localized cyclic guanosine monophosphate (cGMP)-synthesizing complex. We show that the scaffolding protein Scribble associates with cGMP-synthesizing enzymes soluble-guanylate-cyclase (sGC) and neuronal nitric oxide synthase (nNOS). The Scribble scaffold is preferentially localized to and mediates cGMP increase in dendrites. These events are regulated by kinesin KifC2. Knockdown of Scribble, sGC-ß1, or KifC2 or disrupting their associations prevents cGMP increase in dendrites and causes severe defects in apical dendrite development. Local cGMP elevation or sGC expression rescues the effects of Scribble knockdown on dendrite development, indicating that Scribble is an upstream regulator of cGMP. During neuronal polarization, dendrite development is directed by the Scribble scaffold that might link extracellular cues to localized cGMP increase.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , GMP Cíclico/farmacología , Dendritas/metabolismo , Animales , Axones/metabolismo , Encéfalo/metabolismo , Células Cultivadas , GMP Cíclico/metabolismo , Femenino , Guanilato Ciclasa/metabolismo , Hipocampo/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos , Neurogénesis/efectos de los fármacos , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Andamios del Tejido/química , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/fisiología
9.
Nat Protoc ; 11(3): 399-412, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26844428

RESUMEN

This protocol is an extension to:Nat. Protoc. 1, 1552-1558 (2006); doi:10.1038/nprot.2006.276; published online 9 November 2006This article describes how to reliably electroporate with DNA plasmids rodent neuronal progenitors of the hippocampus; the motor, prefrontal and visual cortices; and the cerebellum in utero. As a Protocol Extension article, this article describes an adaptation of an existing Protocol and offers additional applications. The earlier protocol describes how to electroporate mouse embryos using two standard forceps-type electrodes. In the present protocol, additional electroporation configurations are possible because of the addition of a third electrode alongside the two standard forceps-type electrodes. By adjusting the position and polarity of the three electrodes, the electric field can be directed with great accuracy to different neurogenic areas. Bilateral transfection of brain hemispheres can be achieved after a single electroporation episode. Approximately 75% of electroporated embryos survive to postnatal ages, and depending on the target area, 50-90% express the electroporated vector. The electroporation procedure takes 1 h 35 min. The protocol is suitable for the preparation of animals for various applications, including histochemistry, behavioral studies, electrophysiology and in vivo imaging.


Asunto(s)
Encéfalo/embriología , ADN/administración & dosificación , Electroporación/instrumentación , Técnicas de Transferencia de Gen/instrumentación , Plásmidos/administración & dosificación , Animales , Encéfalo/metabolismo , ADN/genética , Electrodos , Embrión de Mamíferos/metabolismo , Diseño de Equipo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Plásmidos/genética , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley
10.
ACS Chem Biol ; 11(6): 1652-60, 2016 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-27031242

RESUMEN

Ion homeostasis regulates critical physiological processes in the living cell. Intracellular chloride concentration not only contributes in setting the membrane potential of quiescent cells but it also plays a role in modulating the dynamic voltage changes during network activity. Dynamic chloride imaging demands new tools, allowing faster acquisition rates and correct accounting of concomitant pH changes. Joining a long-Stokes-shift red-fluorescent protein to a GFP variant with high sensitivity to pH and chloride, we obtained LSSmClopHensor, a genetically encoded fluorescent biosensor optimized for the simultaneous chloride and pH imaging and requiring only two excitation wavelengths (458 and 488 nm). LSSmClopHensor allowed us to monitor the dynamic changes of intracellular pH and chloride concentration during seizure like discharges in neocortical brain slices. Only cells with tightly controlled resting potential revealed a narrow distribution of chloride concentration peaking at about 5 and 8 mM, in neocortical neurons and SK-N-SH cells, respectively. We thus showed that LSSmClopHensor represents a new versatile tool for studying the dynamics of chloride and proton concentration in living systems.


Asunto(s)
Técnicas Biosensibles/métodos , Cloruros/análisis , Colorantes Fluorescentes/química , Proteínas Luminiscentes/química , Animales , Química Encefálica , Células Cultivadas , Humanos , Concentración de Iones de Hidrógeno , Luz , Ratas Sprague-Dawley
11.
Cell Rep ; 11(2): 234-48, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25843720

RESUMEN

Synapsin III (SynIII) is a phosphoprotein that is highly expressed at early stages of neuronal development. Whereas in vitro evidence suggests a role for SynIII in neuronal differentiation, in vivo evidence is lacking. Here, we demonstrate that in vivo downregulation of SynIII expression affects neuronal migration and orientation. By contrast, SynIII overexpression affects neuronal migration, but not orientation. We identify a cyclin-dependent kinase-5 (CDK5) phosphorylation site on SynIII and use phosphomutant rescue experiments to demonstrate its role in SynIII function. Finally, we show that SynIII phosphorylation at the CDK5 site is induced by activation of the semaphorin-3A (Sema3A) pathway, which is implicated in migration and orientation of cortical pyramidal neurons (PNs) and is known to activate CDK5. Thus, fine-tuning of SynIII expression and phosphorylation by CDK5 activation through Sema3A activity is essential for proper neuronal migration and orientation.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Quinasa 5 Dependiente de la Ciclina/genética , Semaforina-3A/biosíntesis , Sinapsinas/genética , Animales , Proteína C-Reactiva/genética , Células COS , Movimiento Celular/genética , Chlorocebus aethiops , Quinasa 5 Dependiente de la Ciclina/biosíntesis , Dendritas/genética , Dendritas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas del Tejido Nervioso/genética , Fosforilación , Cultivo Primario de Células , Células Piramidales/citología , Células Piramidales/metabolismo , Ratas , Semaforina-3A/genética , Transducción de Señal , Sinapsinas/biosíntesis
12.
Nat Commun ; 4: 1800, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23653212

RESUMEN

γ-Aminobutyric acid is the principal inhibitory neurotransmitter in adults, acting through ionotropic chloride-permeable GABAA receptors (GABAARs), and metabotropic GABABRs coupled to calcium or potassium channels, and cyclic AMP signalling. During early development, γ-aminobutyric acid is the main neurotransmitter and is not hyperpolarizing, as GABAAR activation is depolarizing while GABABRs lack coupling to potassium channels. Despite extensive knowledge on GABAARs as key factors in neuronal development, the role of GABABRs remains unclear. Here we address GABABR function during rat cortical development by in utero knockdown (short interfering RNA) of GABABR in pyramidal-neuron progenitors. GABABR short interfering RNA impairs neuronal migration and axon/dendrite morphological maturation by disrupting cyclic AMP signalling. Furthermore, GABABR activation reduces cyclic AMP-dependent phosphorylation of LKB1, a kinase involved in neuronal polarization, and rescues LKB1 overexpression-induced defects in cortical development. Thus, non-hyperpolarizing activation of GABABRs during development promotes neuronal migration and morphological maturation by cyclic AMP/LKB1 signalling.


Asunto(s)
Movimiento Celular , AMP Cíclico/metabolismo , Neuritas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de GABA-B/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Animales Recién Nacidos , Axones/efectos de los fármacos , Axones/metabolismo , Secuencia de Bases , Western Blotting , Movimiento Celular/efectos de los fármacos , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Glutamatos/farmacología , Técnicas In Vitro , Datos de Secuencia Molecular , Neuritas/efectos de los fármacos , Fenotipo , Subunidades de Proteína/metabolismo , Células Piramidales/citología , Células Piramidales/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Corteza Somatosensorial/citología , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-24110012

RESUMEN

Genetic approaches to control DNA expression in different brain areas have provided an excellent system to characterize gene function in health and disease of animal models. With respect to others, in utero electroporation of exogenous DNA into progenitor cells committed to specific brain areas is the optimal solution in terms of simplicity and velocity. Indeed, this method entails one quick and easy surgical procedure aimed at DNA injection in the embryonic brain followed by brief exposure to a strong electric field by a bipolar electrode. Nevertheless, the technique is still lacking the necessary control and reliability in addressing the field. Moving from a theoretical model that accounts for the morphology and the dielectric properties of the embryonic brain, we developed here a set of novel and reliable experimental configurations based on the use of three electrodes for electroporation in mouse. Indeed, by means of a full 3D model of the embryonic brain and the surrounding environment, we showed that the distribution of the electric field can be finely tuned in order to target specific brain regions at a desired temporal window by proper placement of the three electrodes. In the light of this theoretical background, we manufactured a three-electrode device and performed model-guided experimental sessions. The result was an increased spatial control, extended time frames and unprecedented reliability of the genetic manipulation, with respect to the current state of the art. In particular, the outcomes of this method applied into the mouse model are reported here for the first time.


Asunto(s)
Encéfalo/embriología , ADN/química , Electroporación/métodos , Animales , Encéfalo/patología , Simulación por Computador , Electricidad , Electrodos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Ratones , Microscopía Confocal , Modelos Teóricos , Ratas , Reproducibilidad de los Resultados , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA