RESUMEN
T-lineage acute lymphoblastic leukaemia (T-ALL) is a high-risk tumour1 that has eluded comprehensive genomic characterization, which is partly due to the high frequency of noncoding genomic alterations that result in oncogene deregulation2,3. Here we report an integrated analysis of genome and transcriptome sequencing of tumour and remission samples from more than 1,300 uniformly treated children with T-ALL, coupled with epigenomic and single-cell analyses of malignant and normal T cell precursors. This approach identified 15 subtypes with distinct genomic drivers, gene expression patterns, developmental states and outcomes. Analyses of chromatin topology revealed multiple mechanisms of enhancer deregulation that involve enhancers and genes in a subtype-specific manner, thereby demonstrating widespread involvement of the noncoding genome. We show that the immunophenotypically described, high-risk entity of early T cell precursor ALL is superseded by a broader category of 'early T cell precursor-like' leukaemia. This category has a variable immunophenotype and diverse genomic alterations of a core set of genes that encode regulators of hematopoietic stem cell development. Using multivariable outcome models, we show that genetic subtypes, driver and concomitant genetic alterations independently predict treatment failure and survival. These findings provide a roadmap for the classification, risk stratification and mechanistic understanding of this disease.
Asunto(s)
Genoma Humano , Genómica , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Niño , Femenino , Humanos , Masculino , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Epigenómica , Regulación Leucémica de la Expresión Génica , Genoma Humano/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Análisis de la Célula Individual , Transcriptoma/genética , Linfocitos T/citología , Linfocitos T/patologíaRESUMEN
Liquid biopsy, a method of detecting genomic alterations using blood specimens, has recently attracted attention as a noninvasive alternative to surgical tissue biopsy. We attempted quantitative analysis to detect amplification of MYCN (MYCNamp) and loss of heterozygosity at 11q (11qLOH), which are clinical requisites as prognostic factors of neuroblastoma (NB). In this study, cell-free DNA (cfDNA) was extracted from plasma samples from 24 NB patients at diagnosis. Copy numbers of MYCN and NAGK genes were quantitatively analyzed by droplet digital PCR (ddPCR). 11qLOH was also assessed by detecting allelic imbalances of heterozygous single nucleotide polymorphisms in the 11q region. The results obtained were compared to those of specimens from tumor tissues. The correlation coefficient of MYCN copy number of cfDNA and tumor DNA was 0.88 (p < 0.00001). 11qLOH was also accurately detected from cfDNA, except for one case with localized NB. Given the high accuracy of liquid biopsy, to investigate components of cfDNA, the proportion of tumor-derived DNA was estimated by examining the variant allele frequency of tumor-specific mutations in cfDNA. The proportion of tumor-derived DNA in cfDNA was 42.5% (range, 16.9%-55.9%), suggesting sufficient sensitivity of liquid biopsy for NB. In conclusion, MYCN copy number and 11qLOH could be quantitatively analyzed in plasma cfDNA by ddPCR assay. These results suggest that plasma cfDNA can be substituted for tumor DNA and can also be applied for comprehensive genomic profiling analysis.
Asunto(s)
Ácidos Nucleicos Libres de Células , Neuroblastoma , Ácidos Nucleicos Libres de Células/genética , Variaciones en el Número de Copia de ADN , ADN de Neoplasias , Humanos , Biopsia Líquida , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Neuroblastoma/patologíaRESUMEN
BACKGROUND: The present study aimed to assess the appropriate oxygen saturation target in patients with pediatric respiratory diseases by lowering the oxygen saturation target from SpO2 94% to 90%. No previous study has explored appropriate oxygen saturation targets in respiratory diseases other than bronchiolitis. METHODS: The present, prospective, single-arm intervention trial enrolled pediatric inpatients with bronchiolitis, bronchitis, pneumonia, and asthma. The oxygen saturation target was lowered from SpO2 94% to 90% after the patients' general condition improved. The patients continued to be observed for 12 h after achieving SpO2 94%. The duration from the first cut-off point (SpO2 90% for 12 h without oxygen) to the second cut-off point (SpO2 94% for 12 h) was then evaluated. RESULTS: In total, 248 patients completed the study. Patients with bronchiolitis, bronchitis, pneumonia, and asthma had an interval between the two cut-off points of 23.9, 15.5, 19.1, and 13.8 h, respectively, (mean 17.2 h; 95% confidence interval 15.0-19.5). CONCLUSIONS: In generally healthy children, setting the oxygen saturation target at SpO2 90% after confirming improvement in their general condition was safe. The time required for increasing SpO2 from 90% to 94% was longest in the patients with bronchiolitis.
Asunto(s)
Asma , Bronquiolitis , Neumonía , Niño , Humanos , Oximetría , Oxígeno , Saturación de Oxígeno , Estudios ProspectivosRESUMEN
Osteogenesis imperfecta is characterized by frequent fractures, bone deformities, and other systemic symptoms. Severe osteogenesis imperfecta may progress to hydrocephalus; however, treatment strategies for this complication remain unclear. Here, we describe severe osteogenesis imperfecta in an infant with symptomatic hydrocephalus treated with ventriculosubgaleal shunt placement. Targeted next-generation sequencing revealed novel compound heterozygous CRTAP variants, i.e., NM_006371.5, c.241 G > T, p.(Glu81*) and NM_006371.5, c.923-2_932del. We suggest that ventriculosubgaleal shunt placement is an effective and safe treatment for hydrocephalus in patients with severe osteogenesis imperfecta.
RESUMEN
The effect of genetic variation on second malignant neoplasms (SMNs) remains unclear. First, we identified the pathogenic germline variants in cancer-predisposing genes among 15 children with SMNs after childhood leukemia/lymphoma using whole-exome sequencing. Because the prevalence was low, we focused on the association between SMNs and NUDT15 in primary acute lymphoblastic leukemia (ALL) cases. NUDT15 is one of the 6-mercaptopurine (6-MP) metabolic genes, and its variants are common in East Asian individuals. The prevalence of NUDT15 hypomorphic variants was higher in patients with SMNs (n = 14; 42.9%) than in the general population in the gnomAD database (19.7%; P = .042). In the validation study with a cohort of 438 unselected patients with ALL, the cumulative incidence of SMNs was significantly higher among those with (3.0%; 95% confidence interval [CI], 0.6% to 9.4%) than among those without NUDT15 variants (0.3%; 95% CI, 0.0% to 1.5%; P = .045). The 6-MP dose administered to patients with ALL with a NUDT15 variant was higher than that given to those without SMNs (P = .045). The 6-MP-related mutational signature was observed in SMN specimens after 6-MP exposure. In cells exposed to 6-MP, a higher level of 6-MP induced DNA damage in NUDT15-knockdown induced pluripotent stem cells. Our study indicates that NUDT15 variants may confer a risk of SMNs after treatment with 6-MP in patients with ALL.