Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nature ; 627(8003): 431-436, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383786

RESUMEN

To survive bacteriophage (phage) infections, bacteria developed numerous anti-phage defence systems1-7. Some of them (for example, type III CRISPR-Cas, CBASS, Pycsar and Thoeris) consist of two modules: a sensor responsible for infection recognition and an effector that stops viral replication by destroying key cellular components8-12. In the Thoeris system, a Toll/interleukin-1 receptor (TIR)-domain protein, ThsB, acts as a sensor that synthesizes an isomer of cyclic ADP ribose, 1''-3' glycocyclic ADP ribose (gcADPR), which is bound in the Smf/DprA-LOG (SLOG) domain of the ThsA effector and activates the silent information regulator 2 (SIR2)-domain-mediated hydrolysis of a key cell metabolite, NAD+ (refs. 12-14). Although the structure of ThsA has been solved15, the ThsA activation mechanism remained incompletely understood. Here we show that 1''-3' gcADPR, synthesized in vitro by the dimeric ThsB' protein, binds to the ThsA SLOG domain, thereby activating ThsA by triggering helical filament assembly of ThsA tetramers. The cryogenic electron microscopy (cryo-EM) structure of activated ThsA revealed that filament assembly stabilizes the active conformation of the ThsA SIR2 domain, enabling rapid NAD+ depletion. Furthermore, we demonstrate that filament formation enables a switch-like response of ThsA to the 1''-3' gcADPR signal.


Asunto(s)
Bacterias , Proteínas Bacterianas , Bacteriófagos , Adenosina Difosfato Ribosa/análogos & derivados , Adenosina Difosfato Ribosa/biosíntesis , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/metabolismo , Bacterias/metabolismo , Bacterias/virología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Bacteriófagos/química , Bacteriófagos/metabolismo , Bacteriófagos/ultraestructura , Microscopía por Crioelectrón , Hidrólisis , NAD/metabolismo , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica
2.
Nature ; 616(7956): 384-389, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020015

RESUMEN

The widespread TnpB proteins of IS200/IS605 transposon family have recently emerged as the smallest RNA-guided nucleases capable of targeted genome editing in eukaryotic cells1,2. Bioinformatic analysis identified TnpB proteins as the likely predecessors of Cas12 nucleases3-5, which along with Cas9 are widely used for targeted genome manipulation. Whereas Cas12 family nucleases are well characterized both biochemically and structurally6, the molecular mechanism of TnpB remains unknown. Here we present the cryogenic-electron microscopy structures of the Deinococcus radiodurans TnpB-reRNA (right-end transposon element-derived RNA) complex in DNA-bound and -free forms. The structures reveal the basic architecture of TnpB nuclease and the molecular mechanism for DNA target recognition and cleavage that is supported by biochemical experiments. Collectively, these results demonstrate that TnpB represents the minimal structural and functional core of the Cas12 protein family and provide a framework for developing TnpB-based genome editing tools.


Asunto(s)
Proteínas Asociadas a CRISPR , Elementos Transponibles de ADN , Deinococcus , Endonucleasas , Edición Génica , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/clasificación , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/genética , Microscopía por Crioelectrón , Deinococcus/enzimología , Deinococcus/genética , ADN/química , ADN/genética , ADN/metabolismo , ADN/ultraestructura , Elementos Transponibles de ADN/genética , Endonucleasas/química , Endonucleasas/clasificación , Endonucleasas/metabolismo , Endonucleasas/ultraestructura , Evolución Molecular , Edición Génica/métodos , ARN Guía de Sistemas CRISPR-Cas
3.
Mol Cell ; 80(6): 955-970.e7, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33290744

RESUMEN

Prokaryotic toxin-antitoxin (TA) systems are composed of a toxin capable of interfering with key cellular processes and its neutralizing antidote, the antitoxin. Here, we focus on the HEPN-MNT TA system encoded in the vicinity of a subtype I-D CRISPR-Cas system in the cyanobacterium Aphanizomenon flos-aquae. We show that HEPN acts as a toxic RNase, which cleaves off 4 nt from the 3' end in a subset of tRNAs, thereby interfering with translation. Surprisingly, we find that the MNT (minimal nucleotidyltransferase) antitoxin inhibits HEPN RNase through covalent di-AMPylation (diadenylylation) of a conserved tyrosine residue, Y109, in the active site loop. Furthermore, we present crystallographic snapshots of the di-AMPylation reaction at different stages that explain the mechanism of HEPN RNase inactivation. Finally, we propose that the HEPN-MNT system functions as a cellular ATP sensor that monitors ATP homeostasis and, at low ATP levels, releases active HEPN toxin.


Asunto(s)
Antitoxinas/genética , Toxinas Bacterianas/genética , Ribonucleasas/genética , Sistemas Toxina-Antitoxina/genética , Adenosina Monofosfato/genética , Antídotos/química , Antitoxinas/metabolismo , Aphanizomenon/química , Aphanizomenon/genética , Sistemas CRISPR-Cas/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Ribonucleasas/metabolismo , Tirosina/genética
4.
Nucleic Acids Res ; 52(6): 3234-3248, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38261981

RESUMEN

Cas9 and Cas12 nucleases of class 2 CRISPR-Cas systems provide immunity in prokaryotes through RNA-guided cleavage of foreign DNA. Here we characterize a set of compact CRISPR-Cas12m (subtype V-M) effector proteins and show that they provide protection against bacteriophages and plasmids through the targeted DNA binding rather than DNA cleavage. Biochemical assays suggest that Cas12m effectors can act as roadblocks inhibiting DNA transcription and/or replication, thereby triggering interference against invaders. Cryo-EM structure of Gordonia otitidis (Go) Cas12m ternary complex provided here reveals the structural mechanism of DNA binding ensuring interference. Harnessing GoCas12m innate ability to bind DNA target we fused it with adenine deaminase TadA-8e and showed an efficient A-to-G editing in Escherichia coli and human cells. Overall, this study expands our understanding of the functionally diverse Cas12 protein family, revealing DNA-binding dependent interference mechanism of Cas12m effectors that could be harnessed for engineering of compact base-editing tools.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , ADN/genética , Endonucleasas/metabolismo , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo
5.
Nucleic Acids Res ; 48(16): 9204-9217, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32766806

RESUMEN

The type III CRISPR-Cas systems provide immunity against invading nucleic acids through the coordinated transcription-dependent DNA targeting and cyclic adenylate (cAn)-activated RNA degradation. Here, we show that both these pathways contribute to the Streptococcus thermophilus (St) type III-A CRISPR-Cas immunity. HPLC-MS analysis revealed that in the heterologous Escherichia coli host the StCsm effector complex predominantly produces cA5 and cA6. cA6 acts as a signaling molecule that binds to the CARF domain of StCsm6 to activate non-specific RNA degradation by the HEPN domain. By dissecting StCsm6 domains we demonstrate that both CARF and HEPN domains act as ring nucleases that degrade cAns to switch signaling off. CARF ring nuclease converts cA6 to linear A6>p and to the final A3>p product. HEPN domain, which typically degrades RNA, also shows ring nuclease activity and indiscriminately degrades cA6 or other cAns down to A>p. We propose that concerted action of both ring nucleases enables self-regulation of the RNase activity in the HEPN domain and eliminates all cAn secondary messengers in the cell when viral infection is combated by a coordinated action of Csm effector and the cA6-activated Csm6 ribonuclease.


Asunto(s)
Sistemas CRISPR-Cas/genética , Inmunidad/genética , Streptococcus thermophilus/genética , Transcripción Genética/genética , Cromatografía Líquida de Alta Presión , Endonucleasas/genética , Escherichia coli/genética , Escherichia coli/inmunología , Dominios Proteicos/genética , Estabilidad del ARN/genética , Estabilidad del ARN/inmunología , Ribonucleasas/genética , Transducción de Señal/genética , Streptococcus thermophilus/inmunología , Transcripción Genética/inmunología
6.
Nucleic Acids Res ; 47(2): 997-1010, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30445642

RESUMEN

Restriction endonucleases (REs) of the CCGG-family recognize a set of 4-8 bp target sequences that share a common CCGG or CCNGG core and possess PD…D/ExK nuclease fold. REs that interact with 5 bp sequence 5'-CCNGG flip the central N nucleotides and 'compress' the bound DNA to stack the inner base pairs to mimic the CCGG sequence. PfoI belongs to the CCGG-family and cleaves the 7 bp sequence 5'-T|CCNGGA ("|" designates cleavage position). We present here crystal structures of PfoI in free and DNA-bound forms that show unique active site arrangement and mechanism of sequence recognition. Structures and mutagenesis indicate that PfoI features a permuted E…ExD…K active site that differs from the consensus motif characteristic to other family members. Although PfoI also flips the central N nucleotides of the target sequence it does not 'compress' the bound DNA. Instead, PfoI induces a drastic change in DNA backbone conformation that shortens the distance between scissile phosphates to match that in the unperturbed CCGG sequence. Our data demonstrate the diversity and versatility of structural mechanisms employed by restriction enzymes for recognition of related DNA sequences.


Asunto(s)
ADN/química , Desoxirribonucleasas de Localización Especificada Tipo II/química , Dominio Catalítico , Cristalografía por Rayos X , ADN/metabolismo , División del ADN , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Modelos Moleculares , Mutación , Nucleótidos/química , Unión Proteica , Conformación Proteica , Multimerización de Proteína
7.
BMC Biol ; 18(1): 65, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32539804

RESUMEN

BACKGROUND: CRISPR-Cas systems, which provide adaptive immunity against foreign nucleic acids in prokaryotes, can serve as useful molecular tools for multiple applications in genome engineering. Diverse CRISPR-Cas systems originating from distinct prokaryotes function through a common mechanism involving the assembly of small crRNA molecules and Cas proteins into a ribonucleoprotein (RNP) effector complex, and formation of an R-loop structure upon binding to the target DNA. Extensive research on the I-E subtype established the prototypical mechanism of DNA interference in type I systems, where the coordinated action of a ribonucleoprotein Cascade complex and Cas3 protein destroys foreign DNA. However, diverse protein composition between type I subtypes suggests differences in the mechanism of DNA interference that could be exploited for novel practical applications that call for further exploration of these systems. RESULTS: Here we examined the mechanism of DNA interference provided by the type I-F1 system from Aggregatibacter actinomycetemcomitans D7S-1 (Aa). We show that functional Aa-Cascade complexes can be assembled not only with WT spacer of 32 nt but also with shorter or longer (14-176 nt) spacers. All complexes guided by the spacer bind to the target DNA sequence (protospacer) forming an R-loop when a C or CT protospacer adjacent motif (PAM) is present immediately upstream the protospacer (at -1 or -2,-1 position, respectively). The range of spacer and protospacer complementarity predetermine the length of the R-loop; however, only R-loops of WT length or longer trigger the nuclease/helicase Cas2/3, which initiates ATP-dependent unidirectional degradation at the PAM-distal end of the WT R-loop. Meanwhile, truncation of the WT R-loop at the PAM-distal end abolishes Cas2/3 cleavage. CONCLUSIONS: We provide a comprehensive characterisation of the DNA interference mechanism in the type I-F1 CRISPR-Cas system, which is different from the type I-E in a few aspects. First, DNA cleavage initiation, which usually happens at the PAM-proximal end in type I-E, is shifted to the PAM-distal end of WT R-loop in the type I-F1. Second, the R-loop length controls on/off switch of DNA interference in the type I-F1, while cleavage initiation is less restricted in the type I-E. These results indicate that DNA interference in type I-F1 systems is governed through a checkpoint provided by the Cascade complex, which verifies the appropriate length for the R-loop.


Asunto(s)
Aggregatibacter actinomycetemcomitans/genética , Sistemas CRISPR-Cas , Genes Bacterianos , Estructuras R-Loop/genética , Aggregatibacter actinomycetemcomitans/metabolismo
8.
Nucleic Acids Res ; 46(5): 2560-2572, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29471489

RESUMEN

CglI is a restriction endonuclease from Corynebacterium glutamicum that forms a complex between: two R-subunits that have site specific-recognition and nuclease domains; and two H-subunits, with Superfamily 2 helicase-like DEAD domains, and uncharacterized Z1 and C-terminal domains. ATP hydrolysis by the H-subunits catalyses dsDNA translocation that is necessary for long-range movement along DNA that activates nuclease activity. Here, we provide biochemical and molecular modelling evidence that shows that Z1 has a fold distantly-related to RecA, and that the DEAD-Z1 domains together form an ATP binding interface and are the prototype of a previously undescribed monomeric helicase-like motor. The DEAD-Z1 motor has unusual Walker A and Motif VI sequences those nonetheless have their expected functions. Additionally, it contains DEAD-Z1-specific features: an H/H motif and a loop (aa 163-aa 172), that both play a role in the coupling of ATP hydrolysis to DNA cleavage. We also solved the crystal structure of the C-terminal domain which has a unique fold, and demonstrate that the Z1-C domains are the principal DNA binding interface of the H-subunit. Finally, we use small angle X-ray scattering to provide a model for how the H-subunit domains are arranged in a dimeric complex.


Asunto(s)
Corynebacterium glutamicum/enzimología , Enzimas de Restricción del ADN/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Cristalografía por Rayos X , ADN/metabolismo , ADN Helicasas/química , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/metabolismo , Modelos Moleculares , Mutación , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Dispersión del Ángulo Pequeño
9.
Nucleic Acids Res ; 45(16): 9583-9594, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934493

RESUMEN

Type II restriction endonucleases (REases) form a large and highly diverse group of enzymes. Even REases specific for a common recognition site often vary in their oligomeric structure, domain organization and DNA cleavage mechanisms. Here we report biochemical and structural characterization of the monomeric restriction endonuclease UbaLAI, specific for the pseudosymmetric DNA sequence 5'-CC/WGG-3' (where W = A/T, and '/' marks the cleavage position). We present a 1.6 Å co-crystal structure of UbaLAI N-terminal domain (UbaLAI-N) and show that it resembles the B3-family domain of EcoRII specific for the 5'-CCWGG-3' sequence. We also find that UbaLAI C-terminal domain (UbaLAI-C) is closely related to the monomeric REase MvaI, another enzyme specific for the 5'-CCWGG-3' sequence. Kinetic studies of UbaLAI revealed that it requires two recognition sites for optimal activity, and, like other type IIE enzymes, uses one copy of a recognition site to stimulate cleavage of a second copy. We propose that during the reaction UbaLAI-N acts as a handle that tethers the monomeric UbaLAI-C domain to the DNA, thereby helping UbaLAI-C to perform two sequential DNA nicking reactions on the second recognition site during a single DNA-binding event. A similar reaction mechanism may be characteristic to other monomeric two-domain REases.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo II/química , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , División del ADN , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Modelos Moleculares , Dominios Proteicos , Especificidad por Sustrato
10.
Nucleic Acids Res ; 45(6): 3547-3558, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28039325

RESUMEN

Although all Type II restriction endonucleases catalyze phosphodiester bond hydrolysis within or close to their DNA target sites, they form different oligomeric assemblies ranging from monomers, dimers, tetramers to higher order oligomers to generate a double strand break in DNA. Type IIP restriction endonuclease AgeI recognizes a palindromic sequence 5΄-A/CCGGT-3΄ and cuts it ('/' denotes the cleavage site) producing staggered DNA ends. Here, we present crystal structures of AgeI in apo and DNA-bound forms. The structure of AgeI is similar to the restriction enzymes that share in their target sites a conserved CCGG tetranucleotide and a cleavage pattern. Structure analysis and biochemical data indicate, that AgeI is a monomer in the apo-form both in the crystal and in solution, however, it binds and cleaves the palindromic target site as a dimer. DNA cleavage mechanism of AgeI is novel among Type IIP restriction endonucleases.


Asunto(s)
División del ADN , Desoxirribonucleasas de Localización Especificada Tipo II/química , Apoenzimas/química , Emparejamiento Base , Dominio Catalítico , ADN/química , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Modelos Moleculares , Unión Proteica , Multimerización de Proteína
11.
Nucleic Acids Res ; 43(12): 6144-55, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26001968

RESUMEN

The eukaryotic Set and Ring Associated (SRA) domains and structurally similar DNA recognition domains of prokaryotic cytosine modification-dependent restriction endonucleases recognize methylated, hydroxymethylated or glucosylated cytosine in various sequence contexts. Here, we report the apo-structure of the N-terminal SRA-like domain of the cytosine modification-dependent restriction enzyme LpnPI that recognizes modified cytosine in the 5'-C(mC)DG-3' target sequence (where mC is 5-methylcytosine or 5-hydroxymethylcytosine and D = A/T/G). Structure-guided mutational analysis revealed LpnPI residues involved in base-specific interactions and demonstrated binding site plasticity that allowed limited target sequence degeneracy. Furthermore, modular exchange of the LpnPI specificity loops by structural equivalents of related enzymes AspBHI and SgrTI altered sequence specificity of LpnPI. Taken together, our results pave the way for specificity engineering of the cytosine modification-dependent restriction enzymes.


Asunto(s)
Enzimas de Restricción del ADN/química , Proteínas de Unión al ADN/química , 5-Metilcitosina/química , Secuencia de Bases , Citosina/análogos & derivados , Citosina/química , ADN/química , ADN/metabolismo , Enzimas de Restricción del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Unión Proteica , Ingeniería de Proteínas , Estructura Terciaria de Proteína
12.
Nucleic Acids Res ; 43(16): 8100-10, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240380

RESUMEN

Type II restriction endonuclease BsaWI recognizes a degenerated sequence 5'-W/CCGGW-3' (W stands for A or T, '/' denotes the cleavage site). It belongs to a large family of restriction enzymes that contain a conserved CCGG tetranucleotide in their target sites. These enzymes are arranged as dimers or tetramers, and require binding of one, two or three DNA targets for their optimal catalytic activity. Here, we present a crystal structure and biochemical characterization of the restriction endonuclease BsaWI. BsaWI is arranged as an 'open' configuration dimer and binds a single DNA copy through a minor groove contacts. In the crystal primary BsaWI dimers form an indefinite linear chain via the C-terminal domain contacts implying possible higher order aggregates. We show that in solution BsaWI protein exists in a dimer-tetramer-oligomer equilibrium, but in the presence of specific DNA forms a tetramer bound to two target sites. Site-directed mutagenesis and kinetic experiments show that BsaWI is active as a tetramer and requires two target sites for optimal activity. We propose BsaWI mechanism that shares common features both with dimeric Ecl18kI/SgrAI and bona fide tetrameric NgoMIV/SfiI enzymes.


Asunto(s)
Proteínas Bacterianas/química , Desoxirribonucleasas de Localización Especificada Tipo II/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , División del ADN , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Geobacillus stearothermophilus/enzimología , Modelos Moleculares , Unión Proteica , Multimerización de Proteína
13.
Nucleic Acids Res ; 42(22): 14022-30, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25429979

RESUMEN

The restriction endonuclease (REase) NgoAVII is composed of two proteins, R.NgoAVII and N.NgoAVII, and shares features of both Type II restriction enzymes and Type I/III ATP-dependent restriction enzymes (see accompanying paper Zaremba et al., 2014). Here we present crystal structures of the R.NgoAVII apo-protein and the R.NgoAVII C-terminal domain bound to a specific DNA. R.NgoAVII is composed of two domains: an N-terminal nucleolytic PLD domain; and a C-terminal B3-like DNA-binding domain identified previously in BfiI and EcoRII REases, and in plant transcription factors. Structural comparison of the B3-like domains of R.NgoAVII, EcoRII, BfiI and the plant transcription factors revealed a conserved DNA-binding surface comprised of N- and C-arms that together grip the DNA. The C-arms of R.NgoAVII, EcoRII, BfiI and plant B3 domains are similar in size, but the R.NgoAVII N-arm which makes the majority of the contacts to the target site is much longer. The overall structures of R.NgoAVII and BfiI are similar; however, whilst BfiI has stand-alone catalytic activity, R.NgoAVII requires an auxiliary cognate N.NgoAVII protein and ATP hydrolysis in order to cleave DNA at the target site. The structures we present will help formulate future experiments to explore the molecular mechanisms of intersubunit crosstalk that control DNA cleavage by R.NgoAVII and related endonucleases.


Asunto(s)
Enzimas de Restricción del ADN/química , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Enzimas de Restricción del ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química
14.
Nucleic Acids Res ; 42(22): 13887-96, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25429977

RESUMEN

The stress-sensitive restriction-modification (RM) system CglI from Corynebacterium glutamicum and the homologous NgoAVII RM system from Neisseria gonorrhoeae FA1090 are composed of three genes: a DNA methyltransferase (M.CglI and M.NgoAVII), a putative restriction endonuclease (R.CglI and R.NgoAVII, or R-proteins) and a predicted DEAD-family helicase/ATPase (N.CglI and N.NgoAVII or N-proteins). Here we report a biochemical characterization of the R- and N-proteins. Size-exclusion chromatography and SAXS experiments reveal that the isolated R.CglI, R.NgoAVII and N.CglI proteins form homodimers, while N.NgoAVII is a monomer in solution. Moreover, the R.CglI and N.CglI proteins assemble in a complex with R2N2 stoichiometry. Next, we show that N-proteins have ATPase activity that is dependent on double-stranded DNA and is stimulated by the R-proteins. Functional ATPase activity and extensive ATP hydrolysis (∼170 ATP/s/monomer) are required for site-specific DNA cleavage by R-proteins. We show that ATP-dependent DNA cleavage by R-proteins occurs at fixed positions (6-7 nucleotides) downstream of the asymmetric recognition sequence 5'-GCCGC-3'. Despite similarities to both Type I and II restriction endonucleases, the CglI and NgoAVII enzymes may employ a unique catalytic mechanism for DNA cleavage.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , División del ADN , Enzimas de Restricción del ADN/metabolismo , Adenosina Trifosfato/metabolismo , Corynebacterium glutamicum/enzimología , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/aislamiento & purificación , ADN/metabolismo , Enzimas de Restricción del ADN/química , Enzimas de Restricción del ADN/aislamiento & purificación , Hidrólisis , Neisseria gonorrhoeae/enzimología , Nucleótidos/metabolismo , Estructura Terciaria de Proteína
15.
Nucleic Acids Res ; 40(14): 6741-51, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22495930

RESUMEN

Restriction endonuclease Bse634I recognizes and cleaves the degenerate DNA sequence 5'-R/CCGGY-3' (R stands for A or G; Y for T or C, '/' indicates a cleavage position). Here, we report the crystal structures of the Bse634I R226A mutant complexed with cognate oligoduplexes containing ACCGGT and GCCGGC sites, respectively. In the crystal, all potential H-bond donor and acceptor atoms on the base edges of the conserved CCGG core are engaged in the interactions with Bse634I amino acid residues located on the α6 helix. In contrast, direct contacts between the protein and outer base pairs are limited to van der Waals contact between the purine nucleobase and Pro203 residue in the major groove and a single H-bond between the O2 atom of the outer pyrimidine and the side chain of the Asn73 residue in the minor groove. Structural data coupled with biochemical experiments suggest that both van der Waals interactions and indirect readout contribute to the discrimination of the degenerate base pair by Bse634I. Structure comparison between related enzymes Bse634I (R/CCGGY), NgoMIV (G/CCGGC) and SgrAI (CR/CCGGYG) reveals how different specificities are achieved within a conserved structural core.


Asunto(s)
ADN/química , Desoxirribonucleasas de Localización Especificada Tipo II/química , Emparejamiento Base , Dominio Catalítico , Cristalización , ADN/metabolismo , División del ADN , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica
16.
Nucleic Acids Res ; 39(9): 3744-53, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21227928

RESUMEN

Unlike orthodox Type II restriction endonucleases that are homodimers and interact with the palindromic 4-8-bp DNA sequences, BcnI is a monomer which has a single active site but cuts both DNA strands within the 5'-CC↓CGG-3'/3'-GGG↓CC-5' target site ('↓' designates the cleavage position). Therefore, after cutting the first strand, the BcnI monomer must re-bind to the target site in the opposite orientation; but in this case, it runs into a different central base because of the broken symmetry of the recognition site. Crystal-structure analysis shows that to accept both the C:G and G:C base pairs at the center of its target site, BcnI employs two symmetrically positioned histidines H77 and H219 that presumably change their protonation state depending on the binding mode. We show here that a single mutation of BcnI H77 or H219 residues restricts the cleavage activity of the enzyme to either the 5'-CCCGG-3' or the 5'-CCGGG-3' strand, thereby converting BcnI into a strand-specific nicking endonuclease. This is a novel approach for engineering of monomeric restriction enzymes into strand-specific nucleases.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo II/química , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , ADN/química , ADN/metabolismo , División del ADN , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Mutagénesis , Unión Proteica , Especificidad por Sustrato
17.
Science ; 382(6674): 1036-1041, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38033086

RESUMEN

Prokaryotic type III CRISPR-Cas antiviral systems employ cyclic oligoadenylate (cAn) signaling to activate a diverse range of auxiliary proteins that reinforce the CRISPR-Cas defense. Here we characterize a class of cAn-dependent effector proteins named CRISPR-Cas-associated messenger RNA (mRNA) interferase 1 (Cami1) consisting of a CRISPR-associated Rossmann fold sensor domain fused to winged helix-turn-helix and a RelE-family mRNA interferase domain. Upon activation by cyclic tetra-adenylate (cA4), Cami1 cleaves mRNA exposed at the ribosomal A-site thereby depleting mRNA and leading to cell growth arrest. The structures of apo-Cami1 and the ribosome-bound Cami1-cA4 complex delineate the conformational changes that lead to Cami1 activation and the mechanism of Cami1 binding to a bacterial ribosome, revealing unexpected parallels with eukaryotic ribosome-inactivating proteins.


Asunto(s)
Bacterias , Proteínas Bacterianas , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Endorribonucleasas , Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/clasificación , ARN Mensajero/química , Transducción de Señal , Endorribonucleasas/química , Dominios Proteicos
18.
Sci Adv ; 9(5): eade4361, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36735785

RESUMEN

Cytidine deaminases (CDAs) catalyze the hydrolytic deamination of cytidine and 2'-deoxycytidine to uridine and 2'-deoxyuridine. Here, we report that prokaryotic homo-tetrameric CDAs catalyze the nucleophilic substitution at the fourth position of N4-acyl-cytidines, N4-alkyl-cytidines, and N4-alkyloxycarbonyl-cytidines, and S4-alkylthio-uridines and O4-alkyl-uridines, converting them to uridine and corresponding amide, amine, carbamate, thiol, or alcohol as leaving groups. The x-ray structure of a metagenomic CDA_F14 and the molecular modeling of the CDAs used in this study show a relationship between the bulkiness of a leaving group and the volume of the binding pocket, which is partly determined by the flexible ß3α3 loop of CDAs. We propose that CDAs that are active toward a wide range of substrates participate in salvage and/or catabolism of variously modified pyrimidine nucleosides. This identified promiscuity of CDAs expands the knowledge about the cellular turnover of cytidine derivatives, including the pharmacokinetics of pyrimidine-based prodrugs.


Asunto(s)
Nucleósidos de Pirimidina , Nucleósidos de Pirimidina/metabolismo , Citidina Desaminasa/metabolismo , Uridina/metabolismo , Citidina , Desoxicitidina
19.
Sci Rep ; 12(1): 15548, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109551

RESUMEN

CRISPR-Cas systems are prokaryotic adaptive immune systems that protect against phages and other invading nucleic acids. The evolutionary arms race between prokaryotes and phages gave rise to phage anti-CRISPR (Acr) proteins that act as a counter defence against CRISPR-Cas systems by inhibiting the effector complex. Here, we used a combination of bulk biochemical experiments, X-ray crystallography and single-molecule techniques to explore the inhibitory activity of AcrIF6 and AcrIF9 proteins against the type I-F CRISPR-Cas system from Aggregatibacter actinomycetemcomitans (Aa). We showed that AcrIF6 and AcrIF9 proteins hinder Aa-Cascade complex binding to target DNA. We solved a crystal structure of Aa1-AcrIF9 protein, which differ from other known AcrIF9 proteins by an additional structurally important loop presumably involved in the interaction with Cascade. We revealed that AcrIF9 association with Aa-Cascade promotes its binding to off-target DNA sites, which facilitates inhibition of CRISPR-Cas protection.


Asunto(s)
Bacteriófagos , Proteínas Asociadas a CRISPR , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Cristalografía por Rayos X , ADN/metabolismo
20.
Nucleic Acids Res ; 37(19): 6613-24, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19729506

RESUMEN

EcoRII restriction endonuclease is specific for the 5'-CCWGG sequence (W stands for A or T); however, it shows no activity on a single recognition site. To activate cleavage it requires binding of an additional target site as an allosteric effector. EcoRII dimer consists of three structural units: a central catalytic core, made from two copies of the C-terminal domain (EcoRII-C), and two N-terminal effector DNA binding domains (EcoRII-N). Here, we report DNA-bound EcoRII-N and EcoRII-C structures, which show that EcoRII combines two radically different structural mechanisms to interact with the effector and substrate DNA. The catalytic EcoRII-C dimer flips out the central T:A base pair and makes symmetric interactions with the CC:GG half-sites. The EcoRII-N effector domain monomer binds to the target site asymmetrically in a single defined orientation which is determined by specific hydrogen bonding and van der Waals interactions with the central T:A pair in the major groove. The EcoRII-N mode of the target site recognition is shared by the large class of higher plant transcription factors of the B3 superfamily.


Asunto(s)
ADN/química , Desoxirribonucleasas de Localización Especificada Tipo II/química , Emparejamiento Base , Secuencia de Bases , Metilación de ADN , Modelos Moleculares , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA