Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Lancet ; 392(10162): 2388-2396, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30318264

RESUMEN

BACKGROUND: Non-contrast head CT scan is the current standard for initial imaging of patients with head trauma or stroke symptoms. We aimed to develop and validate a set of deep learning algorithms for automated detection of the following key findings from these scans: intracranial haemorrhage and its types (ie, intraparenchymal, intraventricular, subdural, extradural, and subarachnoid); calvarial fractures; midline shift; and mass effect. METHODS: We retrospectively collected a dataset containing 313 318 head CT scans together with their clinical reports from around 20 centres in India between Jan 1, 2011, and June 1, 2017. A randomly selected part of this dataset (Qure25k dataset) was used for validation and the rest was used to develop algorithms. An additional validation dataset (CQ500 dataset) was collected in two batches from centres that were different from those used for the development and Qure25k datasets. We excluded postoperative scans and scans of patients younger than 7 years. The original clinical radiology report and consensus of three independent radiologists were considered as gold standard for the Qure25k and CQ500 datasets, respectively. Areas under the receiver operating characteristic curves (AUCs) were primarily used to assess the algorithms. FINDINGS: The Qure25k dataset contained 21 095 scans (mean age 43 years; 9030 [43%] female patients), and the CQ500 dataset consisted of 214 scans in the first batch (mean age 43 years; 94 [44%] female patients) and 277 scans in the second batch (mean age 52 years; 84 [30%] female patients). On the Qure25k dataset, the algorithms achieved an AUC of 0·92 (95% CI 0·91-0·93) for detecting intracranial haemorrhage (0·90 [0·89-0·91] for intraparenchymal, 0·96 [0·94-0·97] for intraventricular, 0·92 [0·90-0·93] for subdural, 0·93 [0·91-0·95] for extradural, and 0·90 [0·89-0·92] for subarachnoid). On the CQ500 dataset, AUC was 0·94 (0·92-0·97) for intracranial haemorrhage (0·95 [0·93-0·98], 0·93 [0·87-1·00], 0·95 [0·91-0·99], 0·97 [0·91-1·00], and 0·96 [0·92-0·99], respectively). AUCs on the Qure25k dataset were 0·92 (0·91-0·94) for calvarial fractures, 0·93 (0·91-0·94) for midline shift, and 0·86 (0·85-0·87) for mass effect, while AUCs on the CQ500 dataset were 0·96 (0·92-1·00), 0·97 (0·94-1·00), and 0·92 (0·89-0·95), respectively. INTERPRETATION: Our results show that deep learning algorithms can accurately identify head CT scan abnormalities requiring urgent attention, opening up the possibility to use these algorithms to automate the triage process. FUNDING: Qure.ai.


Asunto(s)
Algoritmos , Lesiones Encefálicas/diagnóstico por imagen , Aprendizaje Profundo , Hemorragias Intracraneales/diagnóstico por imagen , Fracturas Craneales/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Triaje/métodos , Conjuntos de Datos como Asunto , Cabeza/diagnóstico por imagen , Humanos , Estudios Retrospectivos , Índices de Gravedad del Trauma
3.
World Neurosurg ; 185: e1250-e1256, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38519018

RESUMEN

OBJECTIVE: Decision for intervention in acute subdural hematoma patients is based on a combination of clinical and radiographic factors. Age has been suggested as a factor to be strongly considered when interpreting midline shift (MLS) and hematoma volume data for assessing critical clinical severity during operative intervention decisions for acute subdural hematoma patients. The objective of this study was to demonstrate the use of an automated volumetric analysis tool to measure hematoma volume and MLS and quantify their relationship with age. METHODS: A total of 1789 acute subdural hematoma patients were analyzed using qER-Quant software (Qure.ai, Mumbai, India) for MLS and hematoma volume measurements. Univariable and multivariable regressions analyzed association between MLS, hematoma volume, age, and MLS:hematoma volume ratio. RESULTS: In comparison to young patients (≤ 70 years), old patients (>70 years) had significantly higher average hematoma volume (old: 62.2 mL vs. young 46.8 mL, P < 0.0001), lower average MLS (old: 6.6 mm vs. young: 7.4 mm, P = 0.025), and lower average MLS:hematoma volume ratio (old: 0.11 mm/mL vs. young 0.15 mm/mL, P < 0.0001). Young patients had an average of 1.5 mm greater MLS for a given hematoma volume in comparison to old patients. With increasing age, the ratio between MLS and hematoma volume significantly decreases (P = 0.0002). CONCLUSIONS: Commercially available, automated, artificial intelligence (AI)-based tools may be used for obtaining quantitative radiographic measurement data in patients with acute subdural hematoma. Our quantitative results are consistent with the qualitative relationship previously established between age, hematoma volume, and MLS, which supports the validity of using AI-based tools for acute subdural hematoma volume estimation.


Asunto(s)
Inteligencia Artificial , Hematoma Subdural Agudo , Humanos , Hematoma Subdural Agudo/diagnóstico por imagen , Hematoma Subdural Agudo/cirugía , Anciano , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano de 80 o más Años , Factores de Edad , Adulto Joven , Tomografía Computarizada por Rayos X/métodos , Adolescente , Estudios Retrospectivos
4.
BMJ Open ; 14(2): e079824, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346874

RESUMEN

INTRODUCTION: A non-contrast CT head scan (NCCTH) is the most common cross-sectional imaging investigation requested in the emergency department. Advances in computer vision have led to development of several artificial intelligence (AI) tools to detect abnormalities on NCCTH. These tools are intended to provide clinical decision support for clinicians, rather than stand-alone diagnostic devices. However, validation studies mostly compare AI performance against radiologists, and there is relative paucity of evidence on the impact of AI assistance on other healthcare staff who review NCCTH in their daily clinical practice. METHODS AND ANALYSIS: A retrospective data set of 150 NCCTH will be compiled, to include 60 control cases and 90 cases with intracranial haemorrhage, hypodensities suggestive of infarct, midline shift, mass effect or skull fracture. The intracranial haemorrhage cases will be subclassified into extradural, subdural, subarachnoid, intraparenchymal and intraventricular. 30 readers will be recruited across four National Health Service (NHS) trusts including 10 general radiologists, 15 emergency medicine clinicians and 5 CT radiographers of varying experience. Readers will interpret each scan first without, then with, the assistance of the qER EU 2.0 AI tool, with an intervening 2-week washout period. Using a panel of neuroradiologists as ground truth, the stand-alone performance of qER will be assessed, and its impact on the readers' performance will be analysed as change in accuracy (area under the curve), median review time per scan and self-reported diagnostic confidence. Subgroup analyses will be performed by reader professional group, reader seniority, pathological finding, and neuroradiologist-rated difficulty. ETHICS AND DISSEMINATION: The study has been approved by the UK Healthcare Research Authority (IRAS 310995, approved 13 December 2022). The use of anonymised retrospective NCCTH has been authorised by Oxford University Hospitals. The results will be presented at relevant conferences and published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: NCT06018545.


Asunto(s)
Inteligencia Artificial , Medicina Estatal , Humanos , Estudios Retrospectivos , Hemorragias Intracraneales/diagnóstico por imagen , Técnicos Medios en Salud
5.
Diagnostics (Basel) ; 12(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36359565

RESUMEN

In medical practice, chest X-rays are the most ubiquitous diagnostic imaging tests. However, the current workload in extensive health care facilities and lack of well-trained radiologists is a significant challenge in the patient care pathway. Therefore, an accurate, reliable, and fast computer-aided diagnosis (CAD) system capable of detecting abnormalities in chest X-rays is crucial in improving the radiological workflow. In this prospective multicenter quality-improvement study, we have evaluated whether artificial intelligence (AI) can be used as a chest X-ray screening tool in real clinical settings. Methods: A team of radiologists used the AI-based chest X-ray screening tool (qXR) as a part of their daily reporting routine to report consecutive chest X-rays for this prospective multicentre study. This study took place in a large radiology network in India between June 2021 and March 2022. Results: A total of 65,604 chest X-rays were processed during the study period. The overall performance of AI achieved in detecting normal and abnormal chest X-rays was good. The high negatively predicted value (NPV) of 98.9% was achieved. The AI performance in terms of area under the curve (AUC), NPV for the corresponding subabnormalities obtained were blunted CP angle (0.97, 99.5%), hilar dysmorphism (0.86, 99.9%), cardiomegaly (0.96, 99.7%), reticulonodular pattern (0.91, 99.9%), rib fracture (0.98, 99.9%), scoliosis (0.98, 99.9%), atelectasis (0.96, 99.9%), calcification (0.96, 99.7%), consolidation (0.95, 99.6%), emphysema (0.96, 99.9%), fibrosis (0.95, 99.7%), nodule (0.91, 99.8%), opacity (0.92, 99.2%), pleural effusion (0.97, 99.7%), and pneumothorax (0.99, 99.9%). Additionally, the turnaround time (TAT) decreased by about 40.63% from pre-qXR period to post-qXR period. Conclusions: The AI-based chest X-ray solution (qXR) screened chest X-rays and assisted in ruling out normal patients with high confidence, thus allowing the radiologists to focus more on assessing pathology on abnormal chest X-rays and treatment pathways.

6.
World Neurosurg ; 148: e363-e373, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33421645

RESUMEN

BACKGROUND: No large dataset-derived standard has been established for normal or pathologic human cerebral ventricular and cranial vault volumes. Automated volumetric measurements could be used to assist in diagnosis and follow-up of hydrocephalus or craniofacial syndromes. In this work, we use deep learning algorithms to measure ventricular and cranial vault volumes in a large dataset of head computed tomography (CT) scans. METHODS: A cross-sectional dataset comprising 13,851 CT scans was used to deploy U-Net deep learning networks to segment and quantify lateral cerebral ventricular and cranial vault volumes in relation to age and sex. The models were validated against manual segmentations. Corresponding radiologic reports were annotated using a rule-based natural language processing framework to identify normal scans, cerebral atrophy, or hydrocephalus. RESULTS: U-Net models had high fidelity to manual segmentations for lateral ventricular and cranial vault volume measurements (Dice index, 0.878 and 0.983, respectively). The natural language processing identified 6239 (44.7%) normal radiologic reports, 1827 (13.1%) with cerebral atrophy, and 1185 (8.5%) with hydrocephalus. Age-based and sex-based reference tables with medians, 25th and 75th percentiles for scans classified as normal, atrophy, and hydrocephalus were constructed. The median lateral ventricular volume in normal scans was significantly smaller compared with hydrocephalus (15.7 vs. 82.0 mL; P < 0.001). CONCLUSIONS: This is the first study to measure lateral ventricular and cranial vault volumes in a large dataset, made possible with artificial intelligence. We provide a robust method to establish normal values for these volumes and a tool to report these on CT scans when evaluating for hydrocephalus.


Asunto(s)
Algoritmos , Cefalometría/métodos , Conjuntos de Datos como Asunto , Aprendizaje Profundo , Ventrículos Laterales/anatomía & histología , Cráneo/anatomía & histología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Atrofia , Encéfalo/patología , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/patología , Ventrículos Laterales/diagnóstico por imagen , Ventrículos Laterales/patología , Masculino , Persona de Mediana Edad , Modelos Biológicos , Procesamiento de Lenguaje Natural , Neuroimagen , Estudios Retrospectivos , Cráneo/diagnóstico por imagen , Cráneo/patología , Tomografía Computarizada por Rayos X , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA