Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1849(1): 1-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25459751

RESUMEN

Increased expression of sodium channel SCN3A, an embryonic-expressed gene, has been identified in epileptic tissues, which is believed to contribute to the development of epilepsy. However, the regulatory mechanism of SCN3A expression under epileptic condition is still unknown. Here we showed a high level of Scn3a mRNA expression in mouse embryonic hippocampus with gradually decreasing to a low level during the postnatal development and a methylation of a specific CpG site (-39C) in the Scn3a promoter was increased in hippocampus during postnatal development, corresponding to the downregulation of Scn3a expression. Furthermore, in vitro methylation and -39C>T mutation of the Scn3a promoter decreased the reporter gene expression, suggesting an important role of the -39C site in regulating gene expression. We then demonstrated that the sequence containing -39C was a MBD2-binding motif and the CpG methylation of the promoter region increased the capability of MBD2's binding to the motif. Knockdown of MBD2 in mouse N1E-115 cells led to the -39C methylation and the downregulation of Scn3a transcription by decreasing the Scn3a promoter activity. In the hippocampus of seizure mice, the expressions of Scn3a and Mbd2 were upregulated after 10-day KA treatment. At the same time point, the -39C site was demethylated and the capability of MBD2's binding to the Scn3a promoter motif was decreased. Taken together, these findings suggest that CpG methylation and MBD2 are involved in altering Scn3a expression during postnatal development and seizure condition.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Hipocampo/crecimiento & desarrollo , Canal de Sodio Activado por Voltaje NAV1.3/biosíntesis , Convulsiones/genética , Animales , Islas de CpG/genética , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Hipocampo/patología , Humanos , Ratones , Canal de Sodio Activado por Voltaje NAV1.3/genética , ARN Mensajero/genética , Convulsiones/patología , Transcripción Genética
2.
Hum Genet ; 133(6): 801-11, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24464349

RESUMEN

Mutations in the SCN1A gene-encoding voltage-gated sodium channel α-I subunit (Nav1.1) cause various spectrum of epilepsies including Dravet syndrome (DS), a severe and intractable form. A large number of SCN1A mutations identified from the DS patients lead to the loss of function or truncation of Nav1.1 that result in a haploinsufficiency effects, indicating that the exact expression level of SCN1A should be essential to maintain normal brain function. In this study, we have identified five variants c.*1025T>C, c.*1031A>T, c.*1739C>T, c.*1794C>T and c.*1961C>T in the SCN1A 3' UTR in the patients with DS. The c.*1025T>C, c.*1031A>T and c.*1794C>T are conserved among different species. Of all the five variants, only c.*1794C>T is a novel variant and alters the predicted secondary structure of the 3' UTR. We also show that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) only binds to the 3' UTR sequence containing the mutation allele 1794U but not the wild-type allele 1794C, indicating that the mutation allele forms a new GAPDH-binding site. Functional analyses show that the variant negatively regulates the reporter gene expression by affecting the mRNA stability that is mediated by GAPDH's binding, and this phenomenon could be reversed by shRNA-induced GAPDH knockdown. These findings suggest that GAPDH and the 3'-UTR variant are involved in regulating SCN1A expression at post-transcriptional level, which may provide an important clue for further investigating on the relationship between 3'-UTR variants and SCN1A-related diseases.


Asunto(s)
Regiones no Traducidas 3' , Epilepsias Mioclónicas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Mutación , Canal de Sodio Activado por Voltaje NAV1.1/genética , Alelos , Secuencia de Bases , Sitios de Unión , Niño , Epilepsias Mioclónicas/metabolismo , Epilepsias Mioclónicas/patología , Femenino , Regulación de la Expresión Génica , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Haploinsuficiencia , Humanos , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Linaje , Unión Proteica , Estabilidad del ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
3.
Mol Neurobiol ; 51(3): 1053-63, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24906954

RESUMEN

Fragile X syndrome (FXS), a common form of inherited mental retardation, is caused by a loss of expression of the fragile X mental retardation protein (FMRP). FMRP is involved in brain functions by interacting with mRNAs and microRNAs (miRNAs) that selectively control gene expression at translational level. However, little is known about the role of FMRP in regulating miRNA expression. Here, we found a development-dependant dynamic expression of Fmr1 gene (encoding FMRP) in mouse hippocampus with a small peak at postnatal day 7 (P7). MiRNA microarray analysis showed that the levels of 38 miRNAs showed a significant increase with about 15 ~ 250-folds and the levels of 26 miRNAs showed a significant decrease with only about 2 ~ 4-folds in the hippocampus of P7 Fmr1 knockout (KO) mice. The qRT-PCR assay showed that nine of the most increased miRNAs (>100-folds in microarrays) increased about 40 ~ 70-folds and their pre-miRNAs increased about 5 ~ 10-folds, but no significant difference in their pri-miRNA levels was observed, suggesting that the alterations of partial miRNAs are an indirect consequence of FMRP lacking. We further demonstrated that a set of protein-coding mRNAs, potentially targeted by the nine miRNAs, were down-regulated in the hippocampus of Fmr1 KO mice. Finally, luciferase assays demonstrated that miR-34b, miR-340, and miR-148a could down-regulate the reporter gene expression by interacting with the Met 3' UTR. Taken together, these findings suggest that the miRNA expression alterations resulted from the absence of FMRP might contribute to molecular pathology of FXS.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Perfilación de la Expresión Génica , MicroARNs/biosíntesis , MicroARNs/genética , Animales , Línea Celular Tumoral , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados
4.
Mol Neurobiol ; 50(2): 438-48, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24436055

RESUMEN

Voltage-gated sodium channel α subunit type I (Nav1.1, encoded by SCN1A gene) plays a critical role in the initiation of action potential in the central nervous system. Downregulated expression of SCN1A is believed to be associated with epilepsy. Here, we found that the SCN1A promoter (P1c), located at the 5' untranslated exon 1c, drove the reporter gene expression in human NT2 cells, and a region between nt +53 and +62 downstream of the P1c promoter repressed the promoter activity. Further analyses showed that a scaffolding protein RACK1 (receptor for activated C kinase 1) was involved in binding to this silencer. Knockdown of RACK1 expression in NT2 cells deprived the repressive role of the silencer on the P1c promoter and increased SCN1A transcription, suggesting the potential involvement of RACK1 in negatively regulating SCN1A transcription via interaction with the silencer. Furthermore, we demonstrated that the binding of the protein complex including RACK1 to the SCN1A promoter motif was decreased in neuron-like differentiation of the NT2 cells induced by retinoic acid and resulted in the upregulation of SCN1A transcription. Taken together, this study reports a novel role of RACK1 in regulating SCN1A expression that participates in retinoic acid-induced neuronal differentiation of NT2 cells.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Proteínas de Neoplasias/metabolismo , Receptores de Superficie Celular/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Expresión Génica/genética , Humanos , Proteínas del Tejido Nervioso/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Receptores de Cinasa C Activada , Transcripción Genética , Tretinoina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA